Interval Stabbing Problems in Small Integer Ranges

  • Jens M. Schmidt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5878)

Abstract

Given a set I of n intervals, a stabbing query consists of a point q and asks for all intervals in I that contain q. The Interval Stabbing Problem is to find a data structure that can handle stabbing queries efficiently. We propose a new, simple and optimal approach for different kinds of interval stabbing problems in a static setting where the query points and interval ends are in {1,...,O(n)}.

Keywords

interval stabbing interval intersection static discrete point enclosure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range searching. In: FOCS 2000, pp. 198–207 (2000)Google Scholar
  2. 2.
    Andersson, A., Hagerup, T., Nilsson, S., Raman, R.: Sorting in linear time? In: STOC 1995, pp. 427–436 (1995)Google Scholar
  3. 3.
    Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem. In: STOC 1999: Proceedings of the 31st annual ACM symposium on Theory of computing, pp. 295–304. ACM, New York (1999)CrossRefGoogle Scholar
  4. 4.
    Bentley, J.L.: Solutions to Klee’s rectangle problems. Tech. report, Carnegie-Mellon Univ., Pittsburgh, PA (1977)Google Scholar
  5. 5.
    Chazelle, B.: Filtering search: A new approach to query answering. SIAM J. Comput. 15(3), 703–724 (1986)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Edelsbrunner, H.: Dynamic data structures for orthogonal intersection queries. Tech. Report F59, Inst. Informationsverarb, Tech. Univ. Graz (1980)Google Scholar
  7. 7.
    Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: STOC 1984: Proceedings of the 16th annual ACM symposium on Theory of computing, pp. 135–143 (1984)Google Scholar
  8. 8.
    McCreight, E.M.: Efficient algorithms for enumerating intersecting intervals and rectangles. Tech. Report CSL-80-9, Xerox Palo Alto Res. Center, CA (1980)Google Scholar
  9. 9.
    McCreight, E.M.: Priority search trees. SIAM Journal on Computing 14(2), 257–276 (1985)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jens M. Schmidt
    • 1
  1. 1.Freie UniversitätBerlinGermany

Personalised recommendations