New Bounds on the Average Distance from the Fermat-Weber Center of a Planar Convex Body

  • Adrian Dumitrescu
  • Csaba D. Tóth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5878)


The Fermat-Weber center of a planar body Q is a point in the plane from which the average distance to the points in Q is minimal. We first show that for any convex body Q in the plane, the average distance from the Fermat-Weber center of Q to the points of Q is larger than \(\frac{1}{6} \cdot \Delta(Q)\), where Δ(Q) is the diameter of Q. This proves a conjecture of Carmi, Har-Peled and Katz. From the other direction, we prove that the same average distance is at most \(\frac{2(4-\sqrt3)}{13} \cdot \Delta(Q) < 0.3490 \cdot \Delta(Q)\). The new bound substantially improves the previous bound of \(\frac{2}{3 \sqrt3} \cdot \Delta(Q) \approx 0.3849 \cdot \Delta(Q)\) due to Abu-Affash and Katz, and brings us closer to the conjectured value of \(\frac{1}{3} \cdot \Delta(Q)\). We also confirm the upper bound conjecture for centrally symmetric planar convex bodies.


Average Distance Convex Body Circular Sector Symmetric Convex Body Weber Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abu-Affash, A.K., Katz, M.J.: Improved bounds on the average distance to the Fermat-Weber center of a convex object. Inf. Proc. Letts. 109(6), 329–333 (2009)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aronov, B., Carmi, P., Katz, M.J.: Minimum-cost load-balancing partitions. Algorithmica 54(3), 318–336 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Carmi, P., Har-Peled, S., Katz, M.: On the Fermat-Weber center of a convex body. Comput. Geom. Theory Appl. 32, 188–195 (2005)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Drezner, Z., Klamroth, K., Schöbel, A., Wesolowsky, G.O.: The Weber problem. In: Hamacher, H.W., Drezner, Z. (eds.) Facility Location: Applications And Theory, pp. 1–36. Springer, Berlin (2002)Google Scholar
  5. 5.
    Dumitrescu, A., Tóth, Cs.D., Xu, G.: On stars and Steiner stars. Discrete Optimization 6(3), 324–332 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fekete, S., Meijer, H.: On minimum stars and maximum matchings. Discrete & Computational Geometry 23, 389–407 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fekete, S., Mitchell, J.S.B., Weinbrecht, K.: On the continuous Weber and k-median problems. In: Proc. 16th ACM Sympos. Comput. Geom., pp. 70–79. ACM Press, New York (2000)Google Scholar
  8. 8.
    Hadwiger, H., Debrunner, H., Klee, V.: Combinatorial Geometry in the Plane. Holt, Rinehart and Winston, New York (1964)Google Scholar
  9. 9.
    Jung, H.W.E.: Über der kleinsten Kreis, der eine ebene Figur einschließt. J. Angew. Math. 137, 310–313 (1910)zbMATHGoogle Scholar
  10. 10.
    Wesolowsky, G.: The Weber problem: History and perspective. Location Science 1, 5–23 (1993)zbMATHGoogle Scholar
  11. 11.
    Yaglom, I.M., Boltyanski, V.G.: Convex Figures. Holt, Rinehart and Winston, New York (1961)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Adrian Dumitrescu
    • 1
  • Csaba D. Tóth
    • 2
  1. 1.University of Wisconsin–Milwaukee 
  2. 2.University of Calgary and Tufts University 

Personalised recommendations