Max-Coloring Paths: Tight Bounds and Extensions

  • Telikepalli Kavitha
  • Julián Mestre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5878)


The max-coloring problem is to compute a legal coloring of the vertices of a graph G = (V,E) with a non-negative weight function w on V such that \(\sum_{i=1}^k \max_{v\in C_i} w(v_i)\) is minimized, where C 1,...,C k are the various color classes. Max-coloring general graphs is as hard as the classical vertex coloring problem, a special case where vertices have unit weight. In fact, in some cases it can even be harder: for example, no polynomial time algorithm is known for max-coloring trees. In this paper we consider the problem of max-coloring paths and its generalization, max-coloring a broad class of trees and show it can be solved in time \(O(|V| + \text{time for sorting the vertex weights})\). When vertex weights belong to ℝ, we show a matching lower bound of Ω(|V|log|V|) in the algebraic computation tree model.


Candidate Solution Polynomial Time Algorithm Legal Coloring Color Class Tight Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brucker, P.: Scheduling Algorithms, 4th edn. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  2. 2.
    Epstein, L., Levin, A.: On the max-coloring problem. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 142–155. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring: further complexity and approximability results. Inf. Process. Lett. 97(3), 98–103 (2006)MathSciNetGoogle Scholar
  4. 4.
    Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. J. Comput. Syst. Sci. 30(2), 209–221 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Guan, D.J., Zhu, X.: A coloring problem for weighted graphs. Inf. Process. Lett. 61(2), 77–81 (1997)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Halldórsson, M.M., Shachnai, H.: Batch coloring flat graphs and thin. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 198–209. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Han, Y., Thorup, M.: Integer sorting in \(O(n \sqrt{\log \log n})\) expected time and linear space. In: Proceedings of the 43th Annual IEEE Symposium on Foundations of Computer Science, pp. 135–144 (2002)Google Scholar
  8. 8.
    Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Telikepalli Kavitha
    • 1
  • Julián Mestre
    • 2
  1. 1.Indian Institute of ScienceBangaloreIndia
  2. 2.Max-Plank-Institut für InformatikSaarbrückenGermany

Personalised recommendations