Max-Coloring Paths: Tight Bounds and Extensions

  • Telikepalli Kavitha
  • Julián Mestre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5878)


The max-coloring problem is to compute a legal coloring of the vertices of a graph G = (V,E) with a non-negative weight function w on V such that \(\sum_{i=1}^k \max_{v\in C_i} w(v_i)\) is minimized, where C1,...,Ck are the various color classes. Max-coloring general graphs is as hard as the classical vertex coloring problem, a special case where vertices have unit weight. In fact, in some cases it can even be harder: for example, no polynomial time algorithm is known for max-coloring trees. In this paper we consider the problem of max-coloring paths and its generalization, max-coloring a broad class of trees and show it can be solved in time \(O(|V| + \text{time for sorting the vertex weights})\). When vertex weights belong to ℝ, we show a matching lower bound of Ω(|V|log|V|) in the algebraic computation tree model.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brucker, P.: Scheduling Algorithms, 4th edn. Springer, Heidelberg (2004)MATHGoogle Scholar
  2. 2.
    Epstein, L., Levin, A.: On the max-coloring problem. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 142–155. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring: further complexity and approximability results. Inf. Process. Lett. 97(3), 98–103 (2006)MathSciNetGoogle Scholar
  4. 4.
    Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. J. Comput. Syst. Sci. 30(2), 209–221 (1985)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Guan, D.J., Zhu, X.: A coloring problem for weighted graphs. Inf. Process. Lett. 61(2), 77–81 (1997)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Halldórsson, M.M., Shachnai, H.: Batch coloring flat graphs and thin. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 198–209. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Han, Y., Thorup, M.: Integer sorting in \(O(n \sqrt{\log \log n})\) expected time and linear space. In: Proceedings of the 43th Annual IEEE Symposium on Foundations of Computer Science, pp. 135–144 (2002)Google Scholar
  8. 8.
    Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Telikepalli Kavitha
    • 1
  • Julián Mestre
    • 2
  1. 1.Indian Institute of ScienceBangaloreIndia
  2. 2.Max-Plank-Institut für InformatikSaarbrückenGermany

Personalised recommendations