Advertisement

Software Implementation of Pairing-Based Cryptography on Sensor Networks Using the MSP430 Microcontroller

  • Conrado Porto Lopes Gouvêa
  • Julio López
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5922)

Abstract

The software implementation of cryptographic schemes for wireless sensor networks poses a challenge due to the limited capabilites of the platform. Nevertheless, its feasibility has been shown in recent papers. In this work we describe a software implementation of pairing-based cryptography and elliptic curve cryptography for the MSP430 microcontroller, which is used in some wireless sensors including the Tmote Sky and TelosB. We have implemented the pairing computation for the MNT and BN curves over prime fields along with the ECDSA scheme. The main result of this work is a platform-specific optimization for the multiplication and reduction routines that leads to a 28% speedup in the field multiplication compared to the best known timings published. This optimization consequently improves the speed of both pairing computation and point multiplication.

Keywords

pairing based cryptography wireless sensor networks  software implementation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Comba, P.: Exponentiation cryptosystems on the IBM PC. IBM Systems Journal 29(4), 526–538 (1990)CrossRefGoogle Scholar
  2. 2.
    Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.: Comparing elliptic curve cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 925–943. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Scott, M., Szczechowiak, P.: Optimizing multiprecision multiplication for public key cryptography. Cryptology ePrint Archive, Report 2007/299 (2007), http://eprint.iacr.org/
  4. 4.
    Großschädl, J.: Instruction Set Extension for Long Integer Modulo Arithmetic on RISC-Based Smart Cards. In: Symposium on Computer Architecture and High Performance Computing, pp. 13–19 (2002)Google Scholar
  5. 5.
    Szczechowiak, P., Kargl, A., Scott, M., Collier, M.: On the application of pairing based cryptography to wireless sensor networks. In: Proceedings of the second ACM conference on Wireless network security, pp. 1–12. ACM, New York (2009)CrossRefGoogle Scholar
  6. 6.
    Montgomery, P.: Modular multiplication without trial division. Mathematics of computation 44(170), 519–521 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Barrett, P.: Implementing the rivest shamir and adleman public key encryption algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)Google Scholar
  8. 8.
    Certicom Research: SEC 2: Recommended Elliptic Curve Domain Parameters (2006), http://www.secg.org/
  9. 9.
    Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  10. 10.
    National Institute of Standards and Technology: FIPS 186-3: Digital Signature Standard (DSS) (2009), http://www.itl.nist.gov
  11. 11.
    Hankerson, D., Vanstone, S., Menezes, A.: Guide to Elliptic Curve Cryptography. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  12. 12.
    Oliveira, L., Aranha, D., Morais, E., Daguano, F., Lopez, J., Dahab, R.: TinyTate: computing the tate pairing in resource-constrained sensor nodes. In: Sixth IEEE International Symposium on Network Computing and Applications, NCA 2007, pp. 318–323 (2007)Google Scholar
  13. 13.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The 2000 Symposium on Cryptography and Information Security, Okinawa, Japan (2000)Google Scholar
  14. 14.
    Dupont, R., Enge, A.: Provably secure non-interactive key distribution based on pairings. Discrete Applied Mathematics 154(2), 270–276 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Oliveira, L., Scott, M., Lopez, J., Dahab, R.: TinyPBC: Pairings for authenticated identity-based non-interactive key distribution in sensor networks. In: 5th International Conference on Networked Sensing Systems, INSS, pp. 173–180 (2008)Google Scholar
  16. 16.
    Lenstra, A.K.: Key Lengths. In: Handbook of Information Security. John Wiley & Sons, Chichester (2004)Google Scholar
  17. 17.
    Lenstra, A., Verheul, E.: Selecting Cryptographic Key Sizes. Journal of Cryptology 14(4), 255–293 (2001)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Barreto, P., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Nogami, Y., Akane, M., Sakemi, Y., Kato, H., Morikawa, Y.: Integer Variable χ-Based Ate Pairing. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 178–191. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Devegili, A., Scott, M., Dahab, R.: Implementing Cryptographic Pairings over Barreto-Naehrig Curves. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 197–207. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Vercauteren, F.: Optimal pairings. Cryptology ePrint Archive, Report 2008/096 (2008), http://eprint.iacr.org/
  22. 22.
    Lee, E., Lee, H.S., Park, C.M.: Efficient and generalized pairing computation on abelian varieties. Cryptology ePrint Archive, Report 2008/040 (2008), http://eprint.iacr.org/
  23. 23.
    Scott, M., Benger, N., Charlemagne, M., Perez, L.J.D., Kachisa, E.J.: On the final exponentiation for calculating pairings on ordinary elliptic curves. Cryptology ePrint Archive, Report 2008/490 (2008), http://eprint.iacr.org/
  24. 24.
    Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Discrete Applied Mathematics 156(16), 3113–3121 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Wang, H., Li, Q.: Efficient Implementation of Public Key Cryptosystems on Mote Sensors (Short Paper). In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 519–528. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Montgomery, P.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48(177), 243–264 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Szczechowiak, P., Oliveira, L., Scott, M., Collier, M., Dahab, R.: NanoECC: Testing the Limits of Elliptic Curve Cryptography in Sensor Networks. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 305–320. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Fan, J., Vercauteren, F., Verbauwhede, I.: Faster Fp-arithmetic for Cryptographic Pairings on Barreto-Naehrig Curves. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 240–253. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Conrado Porto Lopes Gouvêa
    • 1
  • Julio López
    • 1
  1. 1.Instituto de ComputaçãoUniversidade Estadual de Campinas 

Personalised recommendations