Throughput and Energy Efficiency in IEEE 802.11 WLANs: Friends or Foes?

  • Pablo Serrano
  • Albert Banchs
  • Luca Vollero
  • Matthias Hollick
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 22)


Understanding and optimizing the energy consumption of wireless devices is critical to maximize network lifetime and to provide guidelines for the design of new protocols and interfaces. In this work we first provide an accurate analysis of the energy performance of an IEEE 802.11 WLAN, and then we derive the configuration to maximize it. We also analyze the impact of the energy configuration of the device on the throughput performance, and discuss in which circumstances throughput and energy efficiency can be both maximized and where they constitute different challenges.


Energy efficiency energy optimization throughput optimization IEEE 802.11 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baiamonte, V., Chiasserini, C.-F.: Saving energy during channel contention in 802.11 wlans. Mob. Netw. Appl. 11(2), 287–296 (2006)CrossRefGoogle Scholar
  2. 2.
    Bianchi, G.: Performance analysis of the ieee 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications 18(3), 535–547 (2000)CrossRefGoogle Scholar
  3. 3.
    Bruno, R., Conti, M., Gregori, E.: Optimization of efficiency and energy consumption in p-persistent csma-based wireless lans. IEEE Transactions on Mobile Computing 1(1), 10–31 (2002)CrossRefGoogle Scholar
  4. 4.
    Chen, J.-C., Cheng, K.-W.: Edca/ca: Enhancement of ieee 802.11e edca by contention adaption for energy efficiency. IEEE Transactions on Wireless Communications 7(8), 2866–2870 (2008)CrossRefGoogle Scholar
  5. 5.
    Ergen, M., Varaiya, P.: Decomposition of energy consumption in ieee 802.11. In: IEEE International Conference on Communications, ICC 2007, June 2007, pp. 403–408 (2007)Google Scholar
  6. 6.
    Feeney, L., Nilsson, M.: Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. In: INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings, vol. 3, pp. 1548–1557. IEEE, Los Alamitos (2001)Google Scholar
  7. 7.
    Heusse, M., Rousseau, F., Guillier, R., Duda, A.: Idle sense: an optimal access method for high throughput and fairness in rate diverse wireless lans. SIGCOMM Comput. Commun. Rev. 35(4), 121–132 (2005)CrossRefGoogle Scholar
  8. 8.
    Wang, C., Li, B., Li, L.: A new collision resolution mechanism to enhance the performance of ieee 802.11 dcf. IEEE Transactions on Vehicular Technology 53(4), 1235–1246 (2004)CrossRefGoogle Scholar
  9. 9.
    Wang, X., Yin, J., Agrawal, D.P.: Analysis and optimization of the energy efficiency in the 802.11 dcf. Mob. Netw. Appl. 11(2), 279–286 (2006)CrossRefGoogle Scholar
  10. 10.
    Wu, H., Peng, Y., Long, K., Cheng, S., Ma, J.: Performance of reliable transport protocol over IEEE 802.11 wireles LAN: Analysis and enhancement. In: Proceedings of IEEE INFOCOM 2002 (June 2002)Google Scholar

Copyright information

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Authors and Affiliations

  • Pablo Serrano
    • 1
  • Albert Banchs
    • 1
  • Luca Vollero
    • 2
  • Matthias Hollick
    • 3
  1. 1.Universidad Carlos III de MadridLeganésSpain
  2. 2.Università Campus Bio-Medico di RomaRomaItaly
  3. 3.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations