Advertisement

Filter Position in Networks of Evolutionary Processors Does Not Matter: A Direct Proof

  • Paolo Bottoni
  • Anna Labella
  • Florin Manea
  • Victor Mitrana
  • Jose M. Sempere
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5877)

Abstract

In this paper we give a direct proof of the fact that the computational power of networks of evolutionary processors and that of networks of evolutionary processors with filtered connections is the same. It is known that both are equivalent to Turing machines. We propose here a direct simulation of one device by the other. Each computational step in one model is simulated in a constant number of computational steps in the other one while a translation via Turing machines squares the time complexity.

Keywords

Turing Machine Direct Simulation Computational Step Evolutionary Rule Underlying Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bottoni, P., Labella, A., Mitrana, V., Sempere, J.: Networks of evolutionary picture processors (submitted)Google Scholar
  2. 2.
    Drăgoi, C., Manea, F., Mitrana, V.: Accepting networks of evolutionary processors with filtered connections. Journal of Universal Computer Science 13, 1598–1614 (2007)Google Scholar
  3. 3.
    Drăgoi, C., Manea, F.: On the descriptional complexity of accepting networks of evolutionary processors with filtered connections. International Journal of Foundations of Computer Science 19, 1113–1132 (2008)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Errico, L., Jesshope, C.: Towards a new architecture for symbolic processing. In: Artificial Intelligence and Information-Control Systems of Robots 1994, pp. 31–40. World Scientific, Singapore (1994)Google Scholar
  5. 5.
    Hillis, W.: The Connection Machine. MIT Press, Cambridge (1985)Google Scholar
  6. 6.
    Manea, F., Martin-Vide, C., Mitrana, V.: On the size complexity of universal accepting hybrid networks of evolutionary processors. Mathematical Structures in Computer Science 17, 753–771 (2007)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Margenstern, M., Mitrana, V., Perez-Jimenez, M.: Accepting hybrid networks of evolutionary systems. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Martín-Vide, C., Mitrana, V.: Networks of evolutionary processors: results and perspectives. In: Molecular Computational Models: Unconventional Approaches, pp. 78–114. Idea Group Publishing, Hershey (2005)Google Scholar
  9. 9.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)MATHGoogle Scholar
  10. 10.
    Sankoff, D., et al.: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. In: Proc. Natl. Acad. Sci. USA, vol. 89, pp. 6575–6579 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Paolo Bottoni
    • 1
  • Anna Labella
    • 1
  • Florin Manea
    • 2
  • Victor Mitrana
    • 2
    • 3
  • Jose M. Sempere
    • 3
  1. 1.Department of Computer Science“Sapienza” University of RomeRomeItaly
  2. 2.Faculty of MathematicsUniversity of BucharestBucharestRomania
  3. 3.Department of Information Systems and ComputationTechnical University of ValenciaValenciaSpain

Personalised recommendations