Advertisement

Crystal Structure, Chemical Binding, and Lattice Properties

  • J. Geurts
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 120)

Abstract

This chapter starts with an overview of the ZnO crystal structure and its conjunction to the chemical binding. ZnO commonly occurs in the wurtzite structure. This fact is closely related to its tetrahedral bond symmetry and its prominent bond polarity. The main part of the first section deals with the ZnO wurtzite crystal lattice, its symmetry properties, and its geometrical parameters. Besides wurtzite ZnO, the other polytypes, zinc-blende and rocksalt ZnO are also briefly discussed. Subsequently, lattice constant variations and crystal lattice deformations are treated. This discussion starts with static lattice constant variations, induced by temperature or by pressure, as well as strain-induced static lattice deformation, which reduces the crystal symmetry. The impact of this symmetry reduction on the electrical polarization is the piezo effect, which is very much pronounced in ZnO and is exploited in many applications. See also Chap. 13. Dynamic lattice deformations manifest themselves as phonons and, in case of doping, as phonon–plasmon mixed states. The section devoted to phonons starts with a consideration of the vibration eigenmodes and their dispersion curves. Special attention is paid to the investigation of phonons by optical spectroscopy. The methods applied for this purpose are infrared spectroscopy and, more often, Raman spectroscopy. The latter method is very common for the structural quality assessment of ZnO bulk crystals and layers; it is also frequently used for the study of the incorporation of dopant and alloying atoms in the ZnO crystal lattice. Thus, it plays an important role with regard to possible optoelectronics and spintronics applications of ZnO. The final section of this chapter focuses on phonon–plasmon mixed states. These eigenstates occur in doped ZnO due to the strong coupling between collective free-carrier oscillations and lattice vibrations, which occurs due to the high bond polarity. Owing to the direct correlation of the plasmon–phonon modes to the electronic doping, they are an inherent property of ZnO samples, when applied in (opto-) electronics and spintronics. See also Chap. 12.

Keywords

Surface Acoustic Wave Optical Phonon Phonon Mode Wurtzite Structure Chemical Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Rössler, D. Strauch, in Semiconductors II–VI and I–VII Compounds; Semimagnetic Compounds, ed. by U. Rössler. Landolt-Börnstein III/41B Revised and updated edition of Vols. III/17 and 22 (Springer, Heidelberg, 1999)Google Scholar
  2. 2.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  3. 3.
    C. Klingshirn, Phys. Stat. Sol. B 244, 3027 (2007)CrossRefGoogle Scholar
  4. 4.
    G.F. Koster, J.O. Dimmock, R.G. Wheeler, H. Statz, Properties of the Thirty-two Point Groups (M.I.T. Press, Cambridge, MA, 1963)Google Scholar
  5. 5.
    D. Hallwig, E. Mollwo, Verhandl., DPG(VI) 10 HL 37 (1975)Google Scholar
  6. 6.
    L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, NY, 1960)Google Scholar
  7. 7.
    J.C. Phillips, Bonds and Bands in Semiconductors (Academic Press, New York, 1973)Google Scholar
  8. 8.
    A.B.M.A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y.-W. Ok, T.-Y. Seong, Appl. Phys. Lett. 76, 550 (2000)CrossRefGoogle Scholar
  9. 9.
    S.-K. Kim, S.-Y. Jeong, C.-R. Cho, Appl. Phys. Lett. 82, 562 (2003)CrossRefGoogle Scholar
  10. 10.
    J.E. Jaffe, A.C. Hess, Phys. Rev. B 48, 7903 (1993)CrossRefGoogle Scholar
  11. 11.
    S. Desgreniers, Phys. Rev. B 58, 14102 (1998)CrossRefGoogle Scholar
  12. 12.
    J.E. Jaffe, J.A. Snyder, Z. Lin, A.C. Hess, Phys. Rev. B 62, 1660 (2000)CrossRefGoogle Scholar
  13. 13.
    J. Serrano, A.H. Romero, F.J. Manjón, R. Lauck, M. Cardona, A. Rubio, Phys. Rev. B 69, 094306 (2004)CrossRefGoogle Scholar
  14. 14.
    P. Lawaetz, Phys. Rev. B 5, 4039 (1972)CrossRefGoogle Scholar
  15. 15.
    H. Ibach, Phys. Stat. Sol. 33, 257 (1969)CrossRefGoogle Scholar
  16. 16.
    W.N. Lawless, T.K. Gupta, J. Appl. Phys. 60, 607 (1986)CrossRefGoogle Scholar
  17. 17.
    R.A. Robie, H.T. Haselton Jr., B.S. Hemingway, J. Chem. Thermodynamics 21, 743 (1989)CrossRefGoogle Scholar
  18. 18.
    P. Wagner, Ph.D. Thesis, University Erlangen-Nürnberg (Germany), 1978Google Scholar
  19. 19.
    G.A. Slack, Phys. Rev. B 6, 3791 (1972)CrossRefGoogle Scholar
  20. 20.
    M.W. Wolf, J.J. Martin, Phys. Stat. Sol. (a) 17, 215 (1973)CrossRefGoogle Scholar
  21. 21.
    F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 56, R10024 (1997)CrossRefGoogle Scholar
  22. 22.
    Y. Lu, Chapter 13 in Zinc Oxide Bulk, Thin Films and Nanostructures, ed. By Chennupati Jagadish, Stephen J. Pearton (Elsevier, Oxford (UK), 2006)Google Scholar
  23. 23.
    A. Dal Corso, M. Posternak, R. Resta, A. Baldereschi, Phys. Rev. B 50, 10715 (1994)CrossRefGoogle Scholar
  24. 24.
    R. Loudon, Adv. Phys. 13, 423 (1964)CrossRefGoogle Scholar
  25. 25.
    P. Brüesch, in Phonons: Theory and ExperimentsI, ed. by M. Cardona, P. Fulde, H.J. Queisser. Springer Series in Solid-State Sciences, vol 34 (Springer, Berlin, 1982), p. 117Google Scholar
  26. 26.
    R.J. Collins, D.A. Kleinman, J. Phys. Chem. Solids 11, 190 (1959)CrossRefGoogle Scholar
  27. 27.
    M. Tsuboi, J. Chem. Phys. 40, 1326 (1964)CrossRefGoogle Scholar
  28. 28.
    M. Tsuboi, A. Wada, J. Chem. Phys. 48, 2615 (1968)CrossRefGoogle Scholar
  29. 29.
    K. Thoma, B. Dorner, G. Duesing, W. Wegener, Solid State Commun. 15, 1111 (1974)CrossRefGoogle Scholar
  30. 30.
    J. Serrano, F.J. Manjon, A.H. Romero, F. Widulle, R. Lauck, M. Cardona, Phys. Rev. Lett. 90, 055510 (2003)CrossRefGoogle Scholar
  31. 31.
    W. Hewat, Solid State Commun. 8, 187 (1970)CrossRefGoogle Scholar
  32. 32.
    J. Birman, Phys. Rev. 115, 1493 (1959)CrossRefGoogle Scholar
  33. 33.
    T.B. Bateman, J. Appl. Phys. 33, 3309 (1962)CrossRefGoogle Scholar
  34. 34.
    G. Carlotti, D. Fioretto, G. Socino, E. Verona, J. Phys. Condens. Matter. 7, 9147 (1995)CrossRefGoogle Scholar
  35. 35.
    R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M.J. Callahan, Phys. Rev. B 75, 165202 (2007)CrossRefGoogle Scholar
  36. 36.
    C.F. Klingshirn, Semiconductor Optics, 3rd edn. (Springer, Heidelberg, 2007)Google Scholar
  37. 37.
    W.A. Harrison, Electronic Structure and the Properties of Solids (Dover Publ. Inc., New York, 1989)Google Scholar
  38. 38.
    T.C. Damen, S.P.S. Porto, B. Tell, Phys. Rev. 142, 570 (1966)CrossRefGoogle Scholar
  39. 39.
    C.A. Arguello, D.L. Rosseau, S.P.S. Porto, Phys. Rev. 181, 1351 (1969)CrossRefGoogle Scholar
  40. 40.
    M. Schumm, PhD Thesis, University of Würzburg, 2008Google Scholar
  41. 41.
    R.H. Callender, S.S. Sussman, M. Selders, R.K. Chang, Phys. Rev. B 7, 3788 (1973)CrossRefGoogle Scholar
  42. 42.
    H. Siegle, G. Kaczmarczyk, L. Filippidis, A.P. Litvinchuk, A. Hoffmann, C. Thomsen, Phys. Rev. B 55, 7000 (1997)CrossRefGoogle Scholar
  43. 43.
    J.M. Calleja, M. Cardona, Phys. Rev. B 16, 3753 (1977)CrossRefGoogle Scholar
  44. 44.
    W. Richter, in Resonant Raman Scattering in Semiconductors, ed. by G. Höhler. Springer Tracts in Modern Physics, vol 78 (Springer, Berlin, 1976)Google Scholar
  45. 45.
    M. Cardona, in Light Scattering in Solids II, ed. by M. Cardona, G. Güntherodt. Topics in Applied Physics, vol 50 (Springer, Berlin, 1982)Google Scholar
  46. 46.
    J.F. Scott, Phys. Rev. B 2, 1209 (1970)CrossRefGoogle Scholar
  47. 47.
    J. Serrano, F. Widulle, A.H. Romero, M. Cardona, R. Lauck, A. Rubio, Phys. Stat. Sol. B 235, 260 (2003)CrossRefGoogle Scholar
  48. 48.
    I.H. Lee, K.J. Yee, K.G. Lee, E. Oh, D.S. Kim, Y.S. Lim, J. Appl. Phys. 93, 4939 (2003)CrossRefGoogle Scholar
  49. 49.
    Aku-Leh, J. Zhao, R. Merlin, J. Menéndez, M. Cardona, Phys. Rev. B 71, 205211 (2005)CrossRefGoogle Scholar
  50. 50.
    X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, R.P.H. Chang, J. Cryst. Growth 222, 123 (2001)CrossRefGoogle Scholar
  51. 51.
    A. Kaschner, U. Haboeck, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H.R. Alves, D.M. Hofmann, B.K. Meyer, Appl. Phys. Lett. 80, 1909 (2002)CrossRefGoogle Scholar
  52. 52.
    A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4, 42 (2004)CrossRefGoogle Scholar
  53. 53.
    F. Reuss, C. Kirchner, Th. Gruber, R. Kling, S. Maschek, W. Limmer, A. Waag, P. Ziemann, J. Appl. Phys. 95, 3385 (2004)CrossRefGoogle Scholar
  54. 54.
    L. Artus, R. Cusco, E. Alarcon-Llado, G. Gonzalez-Diaz, I. Martil, J. Jimenez, B. Wang, M. Callahan, Appl. Phys. Lett. 90, 181911 (2007)CrossRefGoogle Scholar
  55. 55.
    J. Yu, H. Xing, Q. Zhao, H. Mao, Y. Shen, J. Wang, Z. Lai, Z. Zhu, Sol. Stat. Commun. 138, 502 (2006)CrossRefGoogle Scholar
  56. 56.
    F. Friedrich, N.H. Nickel, Appl. Phys. Lett. 91, 111903 (2007)CrossRefGoogle Scholar
  57. 57.
    M. Tzolov, N. Tzenov, D. Dimova-Malinovska, M. Kalitzova, C. Pizzuto, G. Vitali, G. Zollo, I. Ivanov, Thin Solid Films 379, 28 (2000)CrossRefGoogle Scholar
  58. 58.
    M. Tzolov, N. Tzenov, D. Dimova-Malinovska, M. Kalitzova, C. Pizzuto, G. Vitali, G. Zollo, I. Ivanov, Thin Solid Films 396, 274 (2001)CrossRefGoogle Scholar
  59. 59.
    S. Choopun, N. Hongsith, E. Wongrat, T. Kamwanna, S. Singkarat, P. Mangkorntong, N. Mangkorntong, T. Chairuangsri, J. Am. Ceram. Soc. 91, 174 (2007)Google Scholar
  60. 60.
    C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 83, 1974 (2003)CrossRefGoogle Scholar
  61. 61.
    F.H. Manjon, B. Mari, J. Serrano, A.H. Romero, J. Appl. Phys. 97, 053516 (2005)CrossRefGoogle Scholar
  62. 62.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)CrossRefGoogle Scholar
  63. 63.
    K. Sato, H. Katayama-Yoshida, Japan. J. Appl. Phys. 40, L334 (2001)CrossRefGoogle Scholar
  64. 64.
    C. Liu, F. Yun, H. Morkoç, J. Mat. Sci. Mater. Electron. 16, 555 (2005)CrossRefGoogle Scholar
  65. 65.
    K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)CrossRefGoogle Scholar
  66. 66.
    H. Zhou, Ch. Knies, D.M. Hofmann, J. Stehr, N. Volbers, B.K. Meyer, L. Chen, P. Klar, W. Heimbrodt, Phys. Stat. Sol. (a) 204, 112 (2006)CrossRefGoogle Scholar
  67. 67.
    M. Schumm, M. Koerdel, S. Müller, H. Zutz, C. Ronning, J. Stehr, D.M. Hofmann, J. Geurts, New J. Phys. 10, 043004 (2008)CrossRefGoogle Scholar
  68. 68.
    M. Schumm, M. Koerdel, S. Müller, C. Ronning, E. Dynowska, Z. Goacki, W. Szuszkiewicz, J. Geurts, Phys. Stat. Sol. B 247, 1469 (2010)CrossRefGoogle Scholar
  69. 69.
    Z.L. Wang, J. Phys. Cond. Mat. 16, R82958 (2004)Google Scholar
  70. 70.
    W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Adv. Mater. 16, 1009 (2004)CrossRefGoogle Scholar
  71. 71.
    B. Jusserand, M. Cardona, in Light Scattering on Solids V. Topics in Applied Physics, vol 66 (Springer, Berlin, 1989), p. 49Google Scholar
  72. 72.
    A. Dinger, M. Göppert, R. Becker, M. Grün, S. Petillon, C. Klingshirn, J. Liang, V. Wagner, J. Geurts, Phys. Rev. B 64, 245310 (2001)CrossRefGoogle Scholar
  73. 73.
    V. Wagner, J. Geurts, W. Kiefer, Raman Spectroscopy on II–VI Interfaces, Quantum Dots, and Quantum Wires, in Quantum Dots and Nanowires, Chapter 7, ed. by S. Bandyopadhyay, H.S. Nalwa. Nanotechnology Book Series (American Scientific Publishers, Stevenson Ranch, CA, 2003), pp. 241–302Google Scholar
  74. 74.
    V.A. Fonoberov, A.A. Balandin, Phys. Rev. B 70, 233205 (2004)CrossRefGoogle Scholar
  75. 75.
    L. Bergman, X.-B. Chen, J. Huso, J.L. Morrison, H. Hoeck, J. Appl. Phys. 98, 093507 (2005)CrossRefGoogle Scholar
  76. 76.
    K.A. Alim, V.A. Fonoberov, A.A. Balandin, Appl. Phys. Lett. 86, 053103 (2005)CrossRefGoogle Scholar
  77. 77.
    K.A. Alim, V.A. Fonoberov, M. Shamsa, J. Appl. Phys. 97, 124313 (2005)CrossRefGoogle Scholar
  78. 78.
    B. Marí, J. Cembrero, F.J. Manjón, M. Mollar, R. Gómez, Phys. Stat. Sol. (a) 202, 1602 (2005)CrossRefGoogle Scholar
  79. 79.
    M. Göppert, F. Gehbauer, M. Hetterich, J. Münzel, D. Queck, C. Klingshirn, J. Lumin. 72–74, 430 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Physikalisches Institut der Universität WürzburgWürzburgGermany

Personalised recommendations