Default α-Logic for Modeling Customizable Failure Semantics in Workflow Systems Using Dynamic Reconfiguration Constraints

  • Hasan Davulcu
  • Supratik Mukhopadhyay
  • Prabhdeep Singh
  • Stephen S. Yau
Part of the Communications in Computer and Information Science book series (CCIS, volume 63)

Abstract

In this paper, we propose a logic based framework to handle failures that occur during the execution of workflows by encoding the failures in formalism of a default normal modal logic. Default logic provides a set of rules for adding premises to logical arguments. Since the specifications of services are encoded in α-logic, defaults can be added to this logic to accommodate the failure semantics for the predicates. We encode predicate failures as predicates and provide a dynamic proof system that handles failures at the execution time. Workflow adaptations are re-synthesized from proofs in our logic using a Curry-Howard style correspondence.

Keywords

Adaptive Workflows Failure Semantics Default Modal Logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beguiling, A., Seligman, E., Stephan, P.: Application level fault tolerance in heterogeneous networks of workstations. Journal of Parallel and Distributed Computing on Workstation Clusters and Networked-based Computing (1997)Google Scholar
  2. 2.
    Besnard, P.: An Introduction to Default Logic. In: Symbolic Computation. Springer, Berlin (1989)Google Scholar
  3. 3.
  4. 4.
    Elder, M.C.: Fault Tolerance in Critical Information Systems. PhD thesis, University of Virginia (2001)Google Scholar
  5. 5.
    Etherington, D.W.: Relating default logic and circumstription. In: Proceedings of 11th International Joint Conference on Artificial Intelligence (IJCAI 1989), Milan, Italy, pp. 489–494 (1987)Google Scholar
  6. 6.
    Gartner, F.C.: Fundamentals of fault-tolerant distributed computing in asynchronous environments. ACM Computing Surveys 31(1) (1999)Google Scholar
  7. 7.
    Hwang, S., Kesselman, C.: GridWorkflow: A Flexible Failure Handling Framework for the Grid. In: Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing, HPDC 2003 (2003)Google Scholar
  8. 8.
    Leon, J., Fisher, A.L., Steenkiste, P.: Fail-safe pvm: A portable package for distributed programming with transparent recovery. Technical Report CMU-CS-93-124, Carnegie Mellon University (1993)Google Scholar
  9. 9.
    Plank, J.S., Beck, M., Kingsley, G., Li, K.: Libckpt: Transparent checkpointing under unix. In: Proceedings of the the USENIX Winter Technical Conference, New Orleans, Louisiana (1995)Google Scholar
  10. 10.
    Poole, D., Goebel, R., Aleliunas, R.: Theorist: A logical reasoning system for defaults and diagnosis. In: Cercone, N., McCalla, G. (eds.) The Knowledge Frontier: Essays in the Representation of Knowledge, pp. 331–352. Springer, New York (1987)Google Scholar
  11. 11.
    Poole, D.: A logical framework for default reasoning. Artificial Intelligence 36(1), 27–47 (1988)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Poole, D.: Default Logic, Handbook of Logic for AI & Logic Programming (1998)Google Scholar
  13. 13.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 12(1,2), 81–132 (1980)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Stellner, G.: Cocheck: Checkpointing and process migration for mpi. In: 10th International Parallel Processing Symposium, pp. 526–531. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  15. 15.
    Yau, S.S., Davulcu, H., Mukhopadhyay, S., Huang, D., Gong, H., Singh, P., Gelgi, F.: Automated Situation-Aware Service Composition in Service-Oriented Computing. International Journal of Web Services Research on Services Engineering (JWSR) 4(4), 59–82 (2007)Google Scholar
  16. 16.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic (Paperback)Google Scholar
  17. 17.
    Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Studies in Logic and the Foundations of Mathematics, vol. 149 (Hardcover)Google Scholar
  18. 18.
    Goebel, R.G., Goodwin, R.G.: Applying theory formation to the planning problem. In: Proc. of of the Workshop on the Frame Problem in AI, pp. 207–232 (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hasan Davulcu
    • 1
  • Supratik Mukhopadhyay
    • 2
  • Prabhdeep Singh
    • 1
  • Stephen S. Yau
    • 1
  1. 1.Arizona State UniversityTempeUSA
  2. 2.Utah State UniversityLoganUSA

Personalised recommendations