Fundamentals of Laser-Material Interaction and Application to Multiscale Surface Modification

  • Matthew S. Brown
  • Craig B. Arnold
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 135)


Lasers provide the ability to accurately deliver large amounts of energy into confined regions of a material in order to achieve a desired response. For opaque materials, this energy is absorbed near the surface, modifying surface chemistry, crystal structure, and/or multiscale morphology without altering the bulk. This chapter covers a brief introduction to the fundamental principles governing laser propagation and absorption as well as the resulting material responses. We then highlight two case studies of improving efficiency in photovoltaic and optoelectronic devices as well as optimizing cell-surface interactions in biological interfaces.


Heat Affected Zone Laser Processing Laser Surface Thermalization Time Ablation Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Campbell, J. Opt. Soc. Am. B 10(12) (1993)Google Scholar
  2. 2.
    V. Semak, N. Dahotre, in Lasers in Surface Engineering, Surface Engineering Series, vol. 1, ed. by N. Dahotre (ASM International, Materials Park, OH, USA, 1998), pp. 35–67Google Scholar
  3. 3.
    M. Sheehy, B. Tull, C. Friend, E. Mazur, Mat. Sci. Eng. B 137, 289 (2006)CrossRefGoogle Scholar
  4. 4.
    V. Gregson, Laser Material Processing (Holland Publishing Company, Holland, 1984)Google Scholar
  5. 5.
    I. Etsion, J. Tribol. Trans. ASME 127(1), 248 (2005)CrossRefGoogle Scholar
  6. 6.
    N. Dahotre, Lasers in Surface Engineering, Surface Engineering Series, vol. 1 (ASM International, Materials Park, OH, USA, 1998)Google Scholar
  7. 7.
    D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 2000)Google Scholar
  8. 8.
    W.M. Steen, Laser Material Processing, 3rd edn. (Springer, London, 2003)Google Scholar
  9. 9.
    J.C. Ion, Laser Processing of Engineering Materials: Principles, Procedure and Industrial Applications (Elsevier Butterworth-Heinemann, Oxford, 2005)Google Scholar
  10. 10.
    S.Y. Zhang, Y.H. Ren, G. Lupke, Appl. Opt. 42(4), 715 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    L.A. Romero, F.M. Dickey, J. Opt. Soc. Am. A: 13(4), 751 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    C. Momma, S. Nolte, G. Kamlage, F. von Alvensleben, A. Tunnermann, Appl. Phys. A Mater. Sci. Process. 67(5), 517 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    N. Sanner, N. Huot, E. Audouard, C. Larat, J.P. Huignard, B. Loiseaux, Opt. Lett. 30(12), 1479 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    K. Nemoto, T. Nayuki, T. Fujii, N. Goto, Y. Kanai, Appl. Opt. 36(30), 7689 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    E. McLeod, A.B. Hopkins, C.B. Arnold, Opt. Lett. 31(21), 3155 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    S. Heinemann, Opt. Commun. 119(5–6), 613 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    F.M. Dickey, S.C. Holswade (eds.), Laser Beam Shaping: Theory and Techniques (Marcel Dekker, New York, 2000)Google Scholar
  18. 18.
    E. Hecht, Optics, 4th edn. (Addison Wesley, San Francisco, 2002)Google Scholar
  19. 19.
    J. Heller, J.W. Bartha, C.C. Poon, A.C. Tam, Appl. Phys. Lett. 75(1), 43 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    M. Toulemonde, S. Unamuno, R. Heddache, M.O. Lampert, M. Hageali, P. Siffert, Appl. Phys. A Mater. Sci. Process. 36(1), 31 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    C.B. Arnold, M.J. Aziz, M. Schwarz, D.M. Herlach, Phys. Rev. B 59(1), 334 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    J.C. Weeber, J.R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, J.P. Goudonnet, Phys. Rev. B 64(4) (2001)Google Scholar
  23. 23.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 82nd edn. (CRC, Boca Raton, 2001)Google Scholar
  24. 24.
    R.E. Slusher, B.J. Eggleton, Nonlinear Photonic Crystals, 1st edn. (Springer, Berlin, 2004)Google Scholar
  25. 25.
    N. Ghofraniha, C. Conti, G. Ruocco, S. Trillo, Phys. Rev. Lett. 99(4) (2007)Google Scholar
  26. 26.
    W. Staudt, S. Borneis, K.D. Pippert, Phys. Status Solidi A Appl. Res. 166(2), 743 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    N. Mori, T. Ando, Phys. Rev. B 40(9), 6175 (1989)ADSCrossRefGoogle Scholar
  28. 28.
    B.N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, A. Tunnermann, Appl. Phys. A Mater. Sci. Process. 63(2), 109 (1996)Google Scholar
  29. 29.
    M. von Allmen, A. Blatter, Laser-Beam Interactions with Materials: Physical Principles and Applications. Springer Series in Materials Science (Springer, Berlin, 1995)Google Scholar
  30. 30.
    Y. Hirayama, M. Obara, Appl. Surf. Sci. 197, 741 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison, J. Phys. Chem. B 101(11), 2028 (1997)CrossRefGoogle Scholar
  32. 32.
    A.J. Hick, Heat Treat. Met. 10(1), 3 (1983)Google Scholar
  33. 33.
    D.L. Bourell, H.L. Marcus, J.W. Barlow, J.J. Beaman, Int. J. Powder Metall 28(4), 369 (1992)Google Scholar
  34. 34.
    X. Wang, X. Xu, Appl. Phys. A Mater. Sci. Process. 73(1), 107 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    M.J. Aziz, J.Y. Tsao, M.O. Thompson, P.S. Peercy, C.W. White, Phys. Rev. Lett. 56(23), 2489 (1986)ADSCrossRefGoogle Scholar
  36. 36.
    J.S. Im, M.A. Crowder, R.S. Sposili, J.P. Leonard, H.J. Kim, J.H. Yoon, V.V. Gupta, H.J. Song, H.S. Cho, Phys. Status Solidi A Appl. Res. 166(2), 603 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    T.D. Bennett, D.J. Krajnovich, C.P. Grigoropoulos, P. Baumgart, A.C. Tam, J. Heat Transfer 119(3), 589 (1997)CrossRefGoogle Scholar
  38. 38.
    S.C. Chen, D.G. Cahill, C.P. Grigoropoulos, J. Heat Transfer 122(1), 107 (2000)CrossRefGoogle Scholar
  39. 39.
    J. Eizenkop, I. Avrutsky, D.G. Georgiev, V. Chaudchary, J. Appl. Phys. 103(9), 094311 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    D.B. Chrisey, G.K. Hubler (eds.), Pulsed Laser Deposition of Thin Films (Wiley-Interscience, New York, 1994)Google Scholar
  41. 41.
    X.L. Mao, A.C. Ciocan, R.E. Russo, Appl. Spectrosc. 52(7), 913 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A Mater. Sci. Process. 73(2), 199 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    R. Stoian, D. Ashkenasi, A. Rosenfeld, E.E.B. Campbell, Phys. Rev. B 62(19), 13167 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    B.J. Garrison, R. Srinivasan, Journal of Applied Physics 57(8), 2909 (1985). DOI 10.1063/1.335230. URL
  45. 45.
    A.H. Clauer, B.P. Fairand, B.A. Wilcox, Metall. Mater. Trans. B 8(12), 1871 (1977)ADSCrossRefGoogle Scholar
  46. 46.
    N.G. Semaltianos, W. Perrie, V. Vishnyakov, R. Murray, C.J. Williams, S.P. Edwardson, G. Dearden, P. French, M. Sharp, S. Logothetidis, K.G. Watkins, Mater. Lett. 62(14), 2165 (2008)CrossRefGoogle Scholar
  47. 47.
    J. Woodhead, J. Hergt, M. Shelley, S. Eggins, R. Kemp, Chem. Geol. 209(1–2), 121 (2004)CrossRefGoogle Scholar
  48. 48.
    X. Liu, D. Du, G. Mourou, IEEE J. Quantum Electron. 33(10), 1706 (1997)ADSCrossRefGoogle Scholar
  49. 49.
    D.W. Zhang, T.C. Lei, J.G. Zhang, J.H. Ouyang, Surf. Coat. Technol. 115(2–3), 176 (1999)CrossRefGoogle Scholar
  50. 50.
    X.G. Wang, S.S. Li, C.H. Huang, S. Rawal, J.M. Howard, V. Craciun, T.J. Anderson, O.D. Crisalle, Sol. Energy Mater. Sol. Cells 88(1), 65 (2005)CrossRefGoogle Scholar
  51. 51.
    P. Baumgart, D.J. Krajnovich, T.A. Nguyen, A.C. Tam, IEEE Trans. Magn. 31(6), 2946 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    I. Etsion, Tribol. Lett. 17(4), 733 (2004)CrossRefGoogle Scholar
  53. 53.
    A.C. Tam, W.P. Leung, W. Zapka, W. Ziemlich, J. Appl. Phys. 71(7), 3515 (1992)ADSCrossRefGoogle Scholar
  54. 54.
    R. Ranjan, D.N. Lambeth, M. Tromel, P. Goglia, Y. Li, J. Appl. Phys. 69(8), 5745 (1991)ADSCrossRefGoogle Scholar
  55. 55.
    R. Blossey, Nat. Mater. 2(5), 301 (2003)ADSCrossRefGoogle Scholar
  56. 56.
    V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, C. Fotakis, Appl. Phys. A Mater. Sci. Process. 93(4), 819 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. Anastasiadis, C. Fotakis, Appl. Surf. Sci. 255(10), 5425 (2009). DOI DOI:10.1016/j.apsusc.2008.07.130. URL Laser and Plasma in Micro- and Nano-Scale Materials Processing and Diagnostics – Proceedings from the European Material Research Society Spring Meeting 2008 – Symposium B
  58. 58.
    V. Zorba, P.D. Persano, L., A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, C. Fotakis, Nanotechnology 17(13), 3234 (2006)Google Scholar
  59. 59.
    T.O. Yoon, H.J. Shin, S.C. Jeoung, Y.I. Park, Opt. Express 16(17), 12715 (2008)Google Scholar
  60. 60.
    J. Wang, H. Chen, T. Sui, A. Li, D. Chen, Plant Science 176(5), 687 (2009). DOI 10.1016/j.plantsci.2009.02.013. URL Google Scholar
  61. 61.
    N.A. Patankar, Langmuir 20(19), 8209 (2004)CrossRefGoogle Scholar
  62. 62.
    D. Bouhafs, A. Moussi, A. Chikouche, J.M. Ruiz, Sol. Energy Mater. Sol. Cells 52(1–2), 79 (1998)Google Scholar
  63. 63.
    W. Zhou, M. Tao, L. Chen, H. Yang, J. Appl. Phys. 102(10) (2007)Google Scholar
  64. 64.
    O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schope, C. Beneking, H. Wagner, A. Loffl, H.W. Schock, Thin Solid Films 351(1–2), 247 (1999)ADSCrossRefGoogle Scholar
  65. 65.
    S.J. Wilson, M.C. Hutley, Opt. Acta 29(7), 993âĂŞ1009 (1982)Google Scholar
  66. 66.
    S.A. Boden, D.M. Bagnall, Appl. Phys. Lett. 93(13), 133108 (2008)ADSCrossRefGoogle Scholar
  67. 67.
    J.H. Zhao, A.H. Wang, P. Campbell, M.A. Green, IEEE Trans. Electron Devices 46(7), 1495 (1999)ADSCrossRefGoogle Scholar
  68. 68.
    H. Jansen, M. Deboer, R. Legtenberg, M. Elwenspoek, J. Micromech. Microeng. 5(2), 115 (1995)ADSCrossRefGoogle Scholar
  69. 69.
    H. Nakaya, M. Nishida, Y. Takeda, S. Moriuchi, T. Tonegawa, T. Machida, T. Nunoi, Sol. Energy Mater. Sol. Cells 34(1–4), 219 (1994)Google Scholar
  70. 70.
    J.C. Zolper, S. Narayanan, S.R. Wenham, M.A. Green, Appl. Phys. Lett. 55(22), 2363 (1989)ADSCrossRefGoogle Scholar
  71. 71.
    M. Abbott, J. Cotter, Prog. Photovoltaics Res. Appl. 14(3), 225 (2006)CrossRefGoogle Scholar
  72. 72.
    L. Dobrzański, A. Drygała, K. Gołombek, P. Panek, E. Bielańska, P. Zieba, J. Mater. Process. Technol. 201(1–3), 291 (2008)CrossRefGoogle Scholar
  73. 73.
    M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, S. Martinuzzi, Thin Solid Films 516(20), 6791 (2008)ADSCrossRefGoogle Scholar
  74. 74.
    M. Birnbaum, J. Appl. Phys. 36(11), 3688 (1965)MathSciNetADSCrossRefGoogle Scholar
  75. 75.
    H.M. van Driel, J.E. Sipe, J.F. Young, Phys. Rev. Lett. 49(26) (1982)Google Scholar
  76. 76.
    Z. Guosheng, P.M. Fauchet, A.E. Siegman, Phys. Rev. B 26, 5366 (1982)ADSCrossRefGoogle Scholar
  77. 77.
    J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Phys. Rev. B 27, 1141 (1983)ADSCrossRefGoogle Scholar
  78. 78.
    E.M. Hsu, T.H.R. Crawford, C. Maunders, G.A. Botton, H.K. Haugen, Appl. Phys. Lett. 92(22) (2008)Google Scholar
  79. 79.
    D. Dufft, A. Rosenfeld, S.K. Das, R. Grunwald, J. Bonse, J. Appl. Phys. 105(3) (2009)Google Scholar
  80. 80.
    A.Y. Vorobyev, G. Chunlei, J. Appl. Phys. 103(4), 043513 (2008)ADSCrossRefGoogle Scholar
  81. 81.
    S.R. Foltyn, Pulsed Laser Deposition of Thin Films (Wiley-Interscience, New York, 1994)Google Scholar
  82. 82.
    F. Sánchez, J.L. Morenza, R. Aguiar, J.C. Delgado, M. Varela, Appl. Phys. Lett. 69(5) (1996)Google Scholar
  83. 83.
    Y. Kawakami, E. Ozawa, Appl. Surf. Sci. 218(1–4), 175 (2003)ADSGoogle Scholar
  84. 84.
    A. Bensaoula, C. Boney, R. Pillai, G.A. Shafeev, A.V. Simakin, D. Starikov, Appl. Phys. A Mater. Sci. Process. 79(4–6), 973 (2004)ADSGoogle Scholar
  85. 85.
    Y. Yang, J.J. Yang, C.Y. Liang, H.S. Wang, Opt. Express 16(15), 11259 (2008)ADSCrossRefGoogle Scholar
  86. 86.
    A.Y. Vorobyev, C. Guo, J. Appl. Phys. 104(5) (2008)Google Scholar
  87. 87.
    D.H. Lowndes, J.D. Fowlkes, A.J. Pedraza, Appl. Surf. Sci. 154–155, 647 (2000)CrossRefGoogle Scholar
  88. 88.
    V.V. Voronov, S.I. Dolgaev, S.V. Lavrishchev, A.A. Lyalin, A.V. Simakin, G.A. Shafeev, Quantum Electron. 30, 710 (2000)ADSCrossRefGoogle Scholar
  89. 89.
    A.J. Pedraza, J.D. Fowlkes, S. Jesse, C. Mao, D.H. Lowndes, Appl. Surf. Sci. 168(1–4), 251 (2000)ADSCrossRefGoogle Scholar
  90. 90.
    S. Dolgaev, S. Lavrishev, A. Lyalin, A. Simakin, V. Voronov, G. Shafeev, Appl. Phys. A 73(2), 177 (2001)ADSCrossRefGoogle Scholar
  91. 91.
    J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Appl. Phys. A 74(1) (2002)Google Scholar
  92. 92.
    B.R. Tull, J.E. Carey, E. Mazur, J.P. McDonald, S.M. Yalisove, MRS Bull. 31(8), 626 (2006)CrossRefGoogle Scholar
  93. 93.
    X.Y. Chen, J. Lin, J.M. Liu, Z.G. Liu, Appl. Phys. A (2008)Google Scholar
  94. 94.
    T.H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Appl. Phys. Lett. 73(12) (1998)Google Scholar
  95. 95.
    M.A. Sheehy, L. Winston, J.E. Carey, C.M. Friend, E. Mazur, Chem. Mater. 17, 3582 (2005)CrossRefGoogle Scholar
  96. 96.
    M. Shen, C.H. Crouch, J.E. Carey, E. Mazur, Appl. Phys. Lett. 85, 5694 (2004)ADSCrossRefGoogle Scholar
  97. 97.
    C.H. Crouch, J.E. Carey, J.M. Warrender, M.J. Aziz, E. Mazur, F.Y. Génin, Appl. Phys. Lett. 84, 1850 (2004)ADSCrossRefGoogle Scholar
  98. 98.
    C. Wu, C.H. Crouch, L. Zhao, J.E. Carey, R. Younkin, J.A. Levinson, E. Mazur, R.M. Farrell, P. Gothoskar, A.K., Appl. Phys. Lett. 78(1850) (2001)Google Scholar
  99. 99.
    J.E. Carey, C.H. Crouch, M. Shen, E. Mazur, Opt. Lett. 30, 1773 (2005)ADSCrossRefGoogle Scholar
  100. 100.
    Z. Huang, J.E. Carey, M. Liu, X. Guo, E. Mazur, J.C. Campbell, Appl. Phys. Lett. 89 (2006)Google Scholar
  101. 101.
    R.A. Myers, R. Farrell, A.M. Karger, J.E. Carey, E. Mazur, Appl. Opt. 45, 8825 (2006)ADSCrossRefGoogle Scholar
  102. 102.
    B. Ratner, A. Hoffman, F. Schoen, J. Lemons, Biomaterials Science: An Introduction to Materials and Medicine Second Edition (Elsevier Acedemic Press, Sand Diego, CA, 2004)Google Scholar
  103. 103.
    D. Brunette, Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses, and Medical Applications. (Springer, New York, 2001)Google Scholar
  104. 104.
    S.K. Gupta, A. Chu, A.S. Ranawat, J. Slamin, C.S. Ranawat, J. Arthroplast. 22(6), 787 (2007)CrossRefGoogle Scholar
  105. 105.
    B. Kasemo, J. Lausmaa, Crc Critical Reviews in Biocompatibility 2(4), 335 (1986)Google Scholar
  106. 106.
    D.A. Puleo, A. Nanci, Biomaterials 20(23–24), 2311 (1999)CrossRefGoogle Scholar
  107. 107.
    K. Anselme, Biomaterials 21(7), 667 (2000)CrossRefGoogle Scholar
  108. 108.
    U. Meyer, A. Büchter, H. Wiesmann, U. Joos, D. Jones, European Cells and Materials 9, 39 (2005)Google Scholar
  109. 109.
    M. Wong, J. Eulenberger, R. Schenk, E. Hunziker, J. Biomed. Mater. Res. 29(12), 1567 (1995)CrossRefGoogle Scholar
  110. 110.
    J. Park, J. Bronzino, Y. Kim, Biomaterials: Principles and Applications (CRC Press, Boca Raton, USA, 2003)Google Scholar
  111. 111.
    A. Curtis, C. Wilkinson, Biomaterials 18(24), 1573 (1997)CrossRefGoogle Scholar
  112. 112.
    J. Tan, W.M. Saltzman, Biomaterials 25(17), 3593 (2004)CrossRefGoogle Scholar
  113. 113.
    T.G. Vankooten, J.M. Schakenraad, H.C. Vandermei, H.J. Busscher, Biomaterials 13(13), 897 (1992)CrossRefGoogle Scholar
  114. 114.
    D.M. Brunette, Int J Oral Maxillofac Implants 3(4), 231 (1988)Google Scholar
  115. 115.
    R.G. Flemming, C.J. Murphy, G.A. Abrams, S.L. Goodman, P.F. Nealey, Biomaterials 20(6), 573 (1999)CrossRefGoogle Scholar
  116. 116.
    A. Khakbaznejad, B. Chehroudi, D.M. Brunette, J. Biomed. Mat. Res. A 70A(2), 206 (2004)CrossRefGoogle Scholar
  117. 117.
    W.O. Soboyejo, B. Nemetski, S. Allameh, N. Marcantonio, C. Mercer, J. Ricci, J. Biomed. Mater. Res., Part A 62(1), 56 (2002)Google Scholar
  118. 118.
    M.D. Ward, D.A. Hammer, Biophys. J. 64, 936 (1993)ADSCrossRefGoogle Scholar
  119. 119.
    N. Wang, J.P. Butler, D.E. Ingber, Science 260(5111), 1124 (1993)ADSCrossRefGoogle Scholar
  120. 120.
    E.T. den Braber, J.E. de Ruijter, H.T.J. Smits, L.A. Ginsel, A.F. von Recum, J.A. Jansen, Biomaterials 17(11), 1093 (1996)CrossRefGoogle Scholar
  121. 121.
    E.T. den Braber, J.E. de Ruijter, L.A. Ginsel, A.F. von Recum, J.A. Jansen, J. Biomed. Mater. Res. 40(2), 291 (1998)CrossRefGoogle Scholar
  122. 122.
    A. Kurella, N.B. Dahotre, J. Biomater. Appl. 20(1), 5 (2005)CrossRefGoogle Scholar
  123. 123.
    J. Lawrence, L. Hao, H.R. Chew, Surf. Coat. Technol. 200(18–19), 5581 (2006)CrossRefGoogle Scholar
  124. 124.
    R. Singh, S.G. Chowdhury, S.K. Tiwari, N.B. Dahotre, J. Mater. Sci. Mater. Med. 19(3), 1363 (2008)CrossRefGoogle Scholar
  125. 125.
    D.L. Cochran, D. Buser, C.M. ten Bruggenkate, D. Weingart, T.M. Taylor, J.P. Bernard, F. Peters, J.P. Simpson, Clin. Oral Implants Res. 13(2), 144 (2002)CrossRefGoogle Scholar
  126. 126.
    J.H.C. Wang, E.S. Grood, J. Florer, R. Wenstrup, J. Biomech. 33(6), 729 (2000)CrossRefGoogle Scholar
  127. 127.
    K. Anselme, B. Noel, P. Hardouin, J. Mater. Sci. Mater. Med. 10(12), 815 (1999)CrossRefGoogle Scholar
  128. 128.
    C. Hallgren, H. Reimers, D. Chakarov, J. Gold, A. Wennerberg, Biomaterials 24(5), 701 (2003)CrossRefGoogle Scholar
  129. 129.
    J.P. Ulerich, L.C. Ionescu, J. Chen, W.O. Soboyejo, C.B. Arnold, in Photon Processing in Microelectronics and Photonics VI, ed. by C.B. Arnold, T. Okada, M. Meunier, A.S. Holmes, D.B. Geohegan, F. TrÃd’ger, J.J. Dubowski (San Jose, 2007)Google Scholar
  130. 130.
    A.Y. Fasasi, S. Mwenifumbo, N. Rahbar, J. Chen, M. Li, A.C. Beye, C.B. Arnold, W.O. Soboyejo, Mater. Sci. Eng. C 29(1), 5 (2009)CrossRefGoogle Scholar
  131. 131.
    J. Chen, J. Ulerich, E. Abelev, A. Fasasi, C.B. Arnold, W.O. Soboyejo, Mater. Sci. Eng. C 29(4), 1442 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace Engineering, Princeton Institute for Science and Technology of MaterialsPrinceton UniversityPrincetonUSA

Personalised recommendations