Advertisement

Data Vases: 2D and 3D Plots for Visualizing Multiple Time Series

  • Sidharth Thakur
  • Theresa-Marie Rhyne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5876)

Abstract

One challenge associated with the visualization of time-dep- endent data is to develop graphical representations that are effective for exploring multiple time-varying quantities. Many existing solutions are limited either because they are primarily applicable for visualizing non-negative values or because they sacrifice the display of overall trends in favor of value-based comparisons. We present a two-dimensional representation we call Data Vases that yields a compact pictorial display of a large number of numeric values varying over time. Our method is based on an intuitive and flexible but less widely-used display technique called a “kite diagram.” We show how our interactive two-dimensional method, while not limited to time-dependent problems, effectively uses shape and color for investigating temporal data. In addition, we extended our method to three dimensions for visualizing time-dependent data on cartographic maps.

Keywords

Negative Data Multiple Time Series Temporal Granularity Dynamic Query Graphical Widget 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Müller, W., Schumann, H.: Visualization methods for time-dependent data - an overview. In: Chick, S., Sanchez, P., Ferrin, D., Morrice, D. (eds.) Proc. of Winter Simulation 2003 (2003)Google Scholar
  2. 2.
    Aigner, W., Bertone, A., Miksch, S., Tominski, C., Schumann, H.: Towards a conceptual framework for visual analytics of time and time-oriented data. In: WSC 2007: Proceedings of the 39th conference on Winter simulation, Piscataway, NJ, USA, pp. 721–729. IEEE Press, Los Alamitos (2007)Google Scholar
  3. 3.
    Roddick, J.F., Spiliopoulou, M.: A bibliography of temporal, spatial and spatio-temporal data mining research. SIGKDD Explor. Newsl. 1, 34–38 (1999)CrossRefGoogle Scholar
  4. 4.
    Aigner, W., Miksch, S., Müller, W., Schumann, H., Tominski, C.: Visual methods for analyzing time-oriented data. IEEE TVCG 14, 47–60 (2008)Google Scholar
  5. 5.
    Hochheiser, H., Shneiderman, B.: Dynamic query tools for time series data sets: timebox widgets for interactive exploration. Info. Vis. 3, 1–18 (2004)CrossRefGoogle Scholar
  6. 6.
    Berry, L., Munzner, T.: Binx: Dynamic exploration of time series datasets across aggregation levels. In: IEEE InfoVIS, Washington, DC, USA. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  7. 7.
    Peng, R.: A method for visualizing multivariate time series data. Journal of Statistical Software, Code Snippets 25, 1–17 (2008)Google Scholar
  8. 8.
    Hao, M.C., Dayal, U., Keim, D.A., Schreck, T.: Multi-resolution techniques for visual exploration of large time-series data. In: EuroVis 2007, pp. 27–34 (2007)Google Scholar
  9. 9.
    Havre, S., Hetzler, B., Nowell, L.: Themeriver (tm). In search of trends, patterns, and relationships (1999)Google Scholar
  10. 10.
    Heer, J., Kong, N., Agrawala, M.: Sizing the horizon: The effects of chart size and layering on the graphical perception of time series visualizations. In: CHI 2009, Boston, MA, USA (2009)Google Scholar
  11. 11.
    Emery, D., Myers, K. (eds.): Sequence Stratigraphy. Blackwell Publishing, Malden (1996)Google Scholar
  12. 12.
    Sheppard, C.R.C.: Species and community changes along environmental and pollution gradients. Marine Pollution Bulletin 30, 504–514 (1995)CrossRefGoogle Scholar
  13. 13.
    Kraak, M.: The space-time cube revisited from a geovisualization perspective. In: Proc. 21st Intl. Cartographic Conf., pp. 1988–1995 (2003)Google Scholar
  14. 14.
    Eccles, R., Kapler, T., Harper, R., Wright, W.: Stories in geotime. In: VAST 2007. Visual Analytics Science and Technology, pp. 19–26 (2007)Google Scholar
  15. 15.
    Tominski, C., Schulze-Wollgast, P., Schumann, H.: 3d information visualization for time dependent data on maps. In: IV 2005: Proceedings of the 9th Intl. Conf. on Info. Vis., Washington, DC, USA, pp. 175–181. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  16. 16.
    Dwyer, T., Eades, P.: Visualising a fund manager flow graph with columns and worms. International Conference on Information Visualisation, 147 (2002)Google Scholar
  17. 17.
    Elmqvist, N., Tsigas, P.: A taxonomy of 3d occlusion management for visualization. IEEE Transactions on Visualization and Computer Graphics 14, 1095–1109 (2008)CrossRefGoogle Scholar
  18. 18.
    Luo, Z.X.: Transformation and diversification in early mammal evolution. Nature 450, 1011–1019 (2007)CrossRefGoogle Scholar
  19. 19.
    Tufte, E.R.: The visual display of quantitative information. Graphics Press, Cheshire (1986)Google Scholar
  20. 20.
    Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann Publishers Inc., San Francisco (2004)Google Scholar
  21. 21.
    Healey, C.G., Booth, K.S., Enns, J.T.: Visualizing real-time multivariate data using preattentive processing. ACM Trans. Model. Comput. Simul. 5, 190–221 (1995)CrossRefGoogle Scholar
  22. 22.
    Tominski, C., Fuchs, G., Schumann, H.: Task-driven color coding. In: Intl. Conf. Info. Vis., Washington, DC, USA, pp. 373–380. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  23. 23.
    Shneiderman, B.: Dynamic queries for visual information seeking. IEEE Software 11, 70–77 (1994)CrossRefGoogle Scholar
  24. 24.
    Andrienko, N., Andrienko, G.: Exploratory Analysis of Spatial and Temporal Data: A Systematic Approach. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sidharth Thakur
    • 1
  • Theresa-Marie Rhyne
    • 1
  1. 1.Renaissance Computing InstituteUSA

Personalised recommendations