Data Vases: 2D and 3D Plots for Visualizing Multiple Time Series

  • Sidharth Thakur
  • Theresa-Marie Rhyne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5876)


One challenge associated with the visualization of time-dep- endent data is to develop graphical representations that are effective for exploring multiple time-varying quantities. Many existing solutions are limited either because they are primarily applicable for visualizing non-negative values or because they sacrifice the display of overall trends in favor of value-based comparisons. We present a two-dimensional representation we call Data Vases that yields a compact pictorial display of a large number of numeric values varying over time. Our method is based on an intuitive and flexible but less widely-used display technique called a “kite diagram.” We show how our interactive two-dimensional method, while not limited to time-dependent problems, effectively uses shape and color for investigating temporal data. In addition, we extended our method to three dimensions for visualizing time-dependent data on cartographic maps.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Müller, W., Schumann, H.: Visualization methods for time-dependent data - an overview. In: Chick, S., Sanchez, P., Ferrin, D., Morrice, D. (eds.) Proc. of Winter Simulation 2003 (2003)Google Scholar
  2. 2.
    Aigner, W., Bertone, A., Miksch, S., Tominski, C., Schumann, H.: Towards a conceptual framework for visual analytics of time and time-oriented data. In: WSC 2007: Proceedings of the 39th conference on Winter simulation, Piscataway, NJ, USA, pp. 721–729. IEEE Press, Los Alamitos (2007)Google Scholar
  3. 3.
    Roddick, J.F., Spiliopoulou, M.: A bibliography of temporal, spatial and spatio-temporal data mining research. SIGKDD Explor. Newsl. 1, 34–38 (1999)CrossRefGoogle Scholar
  4. 4.
    Aigner, W., Miksch, S., Müller, W., Schumann, H., Tominski, C.: Visual methods for analyzing time-oriented data. IEEE TVCG 14, 47–60 (2008)Google Scholar
  5. 5.
    Hochheiser, H., Shneiderman, B.: Dynamic query tools for time series data sets: timebox widgets for interactive exploration. Info. Vis. 3, 1–18 (2004)CrossRefGoogle Scholar
  6. 6.
    Berry, L., Munzner, T.: Binx: Dynamic exploration of time series datasets across aggregation levels. In: IEEE InfoVIS, Washington, DC, USA. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  7. 7.
    Peng, R.: A method for visualizing multivariate time series data. Journal of Statistical Software, Code Snippets 25, 1–17 (2008)Google Scholar
  8. 8.
    Hao, M.C., Dayal, U., Keim, D.A., Schreck, T.: Multi-resolution techniques for visual exploration of large time-series data. In: EuroVis 2007, pp. 27–34 (2007)Google Scholar
  9. 9.
    Havre, S., Hetzler, B., Nowell, L.: Themeriver (tm). In search of trends, patterns, and relationships (1999)Google Scholar
  10. 10.
    Heer, J., Kong, N., Agrawala, M.: Sizing the horizon: The effects of chart size and layering on the graphical perception of time series visualizations. In: CHI 2009, Boston, MA, USA (2009)Google Scholar
  11. 11.
    Emery, D., Myers, K. (eds.): Sequence Stratigraphy. Blackwell Publishing, Malden (1996)Google Scholar
  12. 12.
    Sheppard, C.R.C.: Species and community changes along environmental and pollution gradients. Marine Pollution Bulletin 30, 504–514 (1995)CrossRefGoogle Scholar
  13. 13.
    Kraak, M.: The space-time cube revisited from a geovisualization perspective. In: Proc. 21st Intl. Cartographic Conf., pp. 1988–1995 (2003)Google Scholar
  14. 14.
    Eccles, R., Kapler, T., Harper, R., Wright, W.: Stories in geotime. In: VAST 2007. Visual Analytics Science and Technology, pp. 19–26 (2007)Google Scholar
  15. 15.
    Tominski, C., Schulze-Wollgast, P., Schumann, H.: 3d information visualization for time dependent data on maps. In: IV 2005: Proceedings of the 9th Intl. Conf. on Info. Vis., Washington, DC, USA, pp. 175–181. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  16. 16.
    Dwyer, T., Eades, P.: Visualising a fund manager flow graph with columns and worms. International Conference on Information Visualisation, 147 (2002)Google Scholar
  17. 17.
    Elmqvist, N., Tsigas, P.: A taxonomy of 3d occlusion management for visualization. IEEE Transactions on Visualization and Computer Graphics 14, 1095–1109 (2008)CrossRefGoogle Scholar
  18. 18.
    Luo, Z.X.: Transformation and diversification in early mammal evolution. Nature 450, 1011–1019 (2007)CrossRefGoogle Scholar
  19. 19.
    Tufte, E.R.: The visual display of quantitative information. Graphics Press, Cheshire (1986)Google Scholar
  20. 20.
    Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann Publishers Inc., San Francisco (2004)Google Scholar
  21. 21.
    Healey, C.G., Booth, K.S., Enns, J.T.: Visualizing real-time multivariate data using preattentive processing. ACM Trans. Model. Comput. Simul. 5, 190–221 (1995)CrossRefGoogle Scholar
  22. 22.
    Tominski, C., Fuchs, G., Schumann, H.: Task-driven color coding. In: Intl. Conf. Info. Vis., Washington, DC, USA, pp. 373–380. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  23. 23.
    Shneiderman, B.: Dynamic queries for visual information seeking. IEEE Software 11, 70–77 (1994)CrossRefGoogle Scholar
  24. 24.
    Andrienko, N., Andrienko, G.: Exploratory Analysis of Spatial and Temporal Data: A Systematic Approach. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sidharth Thakur
    • 1
  • Theresa-Marie Rhyne
    • 1
  1. 1.Renaissance Computing InstituteUSA

Personalised recommendations