An Adaptive Cutaway with Volume Context Preservation

  • S. Grau
  • A. Puig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5876)


Knowledge expressiveness of scientific data is one of the most important visualization goals. However, current volume visualization systems require a lot of expertise from the final user. In this paper, we present a GPU-based ray casting interactive framework that computes two initial complementary camera locations and allows to select the focus interactively, on interesting structures keeping the volume’s context information with an adaptive cutaway technique. The adaptive cutaway surrounds the focused structure while preserving a depth immersive impression in the data set. Finally, we present a new brush widget to edit interactively the opening of the cutaway and to graduate the context in the final image.


Focus Region Camera Location Focus Structure Context Intersection Focus Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Viola, I., Kanitsar, A., Gröller, E.: Importance-driven feature enhancement in volume visualization. IEEE Trans. on Visualization and CG 11, 408–418 (2005)CrossRefGoogle Scholar
  2. 2.
    Bruckner, S., Gröller, E.: Volumeshop: An interactive system for direct volume illustration. In: IEEE Visualization 2005, pp. 671–678 (2005)Google Scholar
  3. 3.
    Rautek, P., Bruckner, S., Gröller, M.E., Viola, I.: Illustrative visualization: New technology or useless tautology? SIGGRAPH Comput. Graph. 42 (2008)Google Scholar
  4. 4.
    Krüger, J., Schneider, J., Westermann, R.: Clearview: An interactive context preserving hotspot visualization technique. In: IEEE Trans. on Visualization and Computer Graphics (Proc. Visualization / Information Visualization 2006), vol. 12 (2006)Google Scholar
  5. 5.
    Patel, D., Giertsen, C., Thurmond, J., Gröller, M.: Illustrative rendering of seismic data. In: Lensch, H., Bodo Rosenhahn, H.S. (eds.) Proceeding of Vision Modeling and Visualization, pp. 13–22 (2007)Google Scholar
  6. 6.
    Burns, M., Finkelstein, A.: Adaptive cutaways for comprehensible rendering of polygonal scenes. ACM Trans. Graph. 27, 1–7 (2008)CrossRefGoogle Scholar
  7. 7.
    Wang, S., Kaufman, A.: Volume sculpting. In: ACM Symp. Interactive 3D Graphics, pp. 151–156 (1995)Google Scholar
  8. 8.
    Konrad-Verse, O., Preim, B., Littmann, A.: Virtual resection with a deformable cutting plane. In: Proc. of Simulation und Visualisierung, pp. 203–214 (2004)Google Scholar
  9. 9.
    Correa, C., Silver, D., Chen, M.: Feature aligned volume manipulation for illustration and visualization. IEEE Transactions on Visualization and Computer Graphics 12, 1069–1076 (2006)CrossRefGoogle Scholar
  10. 10.
    Bruckner, S., Gröller, M.E.: Exploded views for volume data. IEEE Trans. on Visualization and Computer Graphics 12, 1077–1084 (2006)CrossRefGoogle Scholar
  11. 11.
    Zhou, J., Hinz, M., Tonnies, K.: Focal region-guided feature-based volume rendering. In: Symp. on 3D Data Processing Visualization and Transmission, p. 87 (2002)Google Scholar
  12. 12.
    Bordoloi, U., Shen, H.: View selection for volume rendering. IEEE Visualization, 62 (2005)Google Scholar
  13. 13.
    Takahashi, S., Fujishiro, I., Takeshima, Y., Nishita, T.: A feature-driven approach to locating optimal viewpoints for volume visualization. vis. 0, 63 (2005)Google Scholar
  14. 14.
    Viola, I., Feixas, M., Sbert, M., Gröller, E.: Importance-driven focus of attention. IEEE Trans. on Visualization and Computer Graphics 12, 933–940 (2006)CrossRefGoogle Scholar
  15. 15.
    Mühler, K., Neugebauer, M., Tietjen, C., Preim, B.: Viewpoint selection for intervention planning. In: IEEE Symp. on Visualization 2007, pp. 267–274 (2007)Google Scholar
  16. 16.
    Vázquez, P.P., I Navazo, E.M.: Representative views and paths for volume models. In: Smart Graphics, pp. 106–117 (2008)Google Scholar
  17. 17.
    Kohlmann, P., Bruckner, S., Kanitsar, A., Gröller, E.: The livesync++: Enhancements of an interaction metaphor. Graphics Interface (08), 81–88Google Scholar
  18. 18.
    Polonsky, O., Patane, G., Biasotti, S., Gotsman, C., Spagnuolo, M.: What’s in an image? The Visual Computer 21, 840–847 (2005)CrossRefGoogle Scholar
  19. 19.
    Strengert, M., Kraus, M., Ertl, T.: Pyramid methods in gpu-based image processing. In: VMV 2006, pp. 169–176 (2006)Google Scholar
  20. 20.
    Gorski, K., Hivon, E., Banday, A., Wandelt, B., Hansen, F., Reinecke, M., Bartelman, M.: Healpix – a framework for high resolution discretization, and fast analysis of data distributed on the sphere. The Astrophysical Journal 622, 759 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. Grau
    • 1
  • A. Puig
    • 2
  1. 1.Polytechnic University of CataloniaSpain
  2. 2.University of BarcelonaSpain

Personalised recommendations