Vision-Based Obstacle Avoidance Using SIFT Features

  • Aaron Chavez
  • David Gustafson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5876)


This paper presents a vision-based collision detection algorithm. Our approach is similar to optic flow-based approaches, except that we are working at a feature level instead of a pixel level. The algorithm analyzes a pair of images taken from a moving camera at different times. Then, it recognizes imminent collisions by analyzing the change in scale and location of SIFT features in the pair of images. We have evaluated the performance of this algorithm and present our experimental results.


Local navigation obstacle avoidance vision-based navigation SIFT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Khatib, O.: Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal of Robotics Research 5(1) (1986)Google Scholar
  2. 2.
    Huang, W.H., Fajen, B.R., Fink, J.R., Warren, W.H.: Visual navigation and obstacle avoidance using a steering potential function. Robotics and Autonomous Systems 54, 288–299 (2006)CrossRefGoogle Scholar
  3. 3.
    Lenser, S., Veloso, M.: Visual Sonar: Fast Obstacle Avoidance Using Monocular Vision. In: Proceedings of IROS 2003 (2003)Google Scholar
  4. 4.
    Hoffmann, J., Jüngel, M., Lötzsch, M.: A Vision Based System for Goal-Directed Obstacle Avoidance used in the RC 2003 Obstacle Avoidance Challenge. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 418–425. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Lorigo, L., Brooks, R., Grimsou, W.: Visually-Guided Obstacle Avoidance in Unstructured Environments. In: IROS 1997, vol. 1, pp. 373–379 (1997)Google Scholar
  6. 6.
    Sekimori, D., Usui, T., Masutani, Y., Miyazaki, F.: High-speed Obstacle Avoidance and Self-Localization for Mobile Robots Based on Omnidirectional Imaging of the Floor Region. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, p. 204. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Gini, G., Marchi, A.: Indoor Robot Navigation with Single Camera Vision. In: Proc. Pattern Recognition in Information Systems, PRIS, Spain (2002)Google Scholar
  8. 8.
    Pears, N., Liang, B.: Ground Plane Segmentation for Mobile Robot Visual Navigation. In: IROS 2001, vol. 3, pp. 1513–1518 (2001)Google Scholar
  9. 9.
    Ulrich, I., Nourbakhsh, I.: Appearance-Based Obstacle Detection With Monocular Color Vision. In: Proceedings of AAAI National Conference on Artificial Intelligence, Austin, TX, USA (2000)Google Scholar
  10. 10.
    Jahne, B., Geissler, P.: Depth From Focus with One Image. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition CVPR, pp. 713–717 (1994)Google Scholar
  11. 11.
    Michels, J., Saxena, A., Ng, A.Y.: High Speed Obstacle Avoidance Using Monocular Vision and Reinforcement Learning. In: ICML (2005)Google Scholar
  12. 12.
    Elinas, P., Hoey, J., Lahey, D., Montgomery, J.D., Murray, D., Se, S., Little, J.J.: Waiting with Jose, a Vision-Based Mobile Robot. In: ICRA 2002, vol. 4, pp. 3698–3705 (2002)Google Scholar
  13. 13.
    Scharstein, D., Szeliski, R.: A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. Int’l Journal of Computer Vision 47, 7–42 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Burschkal, D., Lee, S., Hager, G.: Stereo-Based Obstacle Avoidance in Indoor Environments with Active Sensor Re-calibration. In: ICRA 2002, vol. 2, pp. 2066–2072 (2002)Google Scholar
  15. 15.
    Barron, J., Fleet, D., Beauchemin, S.: Performance of Optical Flow Techniques. Int’l Journal of Computer Vision 12, 43–77 (1994)CrossRefGoogle Scholar
  16. 16.
    Camus, T., Coombs, D., Herman, M., Hong, T.-H.: Real-time Single Workstation Obstacle Avoidance Using Only Wide-Field Flow Divergence. In: International Conference on Pattern Recognition, vol. 3, pp. 323–330 (1996)Google Scholar
  17. 17.
    Souhila, K., Karim, A.: Optical Flow Based Robot Obstacle Avoidance. International Journal of Advanced Robotic Systems 4(1) (2007)Google Scholar
  18. 18.
    Lowe, D.G.: Object Recognition from Local Scale-Invariant Features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 1150–1157 (1999)Google Scholar
  19. 19.
    Se, S., Lowe, D.G., Little, J.: Vision-Based Mobile Robot Localization and Mapping Using Scale-Invariant Features. In: International Conference on Robotics and Automation, Seoul, Korea, pp. 2051–2058 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Aaron Chavez
    • 1
  • David Gustafson
    • 1
  1. 1.Department of Computer ScienceKansas State UniversityManhattan

Personalised recommendations