3D Model Reconstruction from Turntable Sequence with Multiple -View Triangulation

  • Jian Zhang
  • Fei Mai
  • Y. S. Hung
  • G. Chesi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5876)


This paper presents a new algorithm for 3D shape recovery from an image sequence captured under circular motion. The algorithm recovers the 3D shape by reconstructing a set of 3D rim curves, where a 3D rim curve is defined by the two frontier points arising from two views. The idea consists of estimating the position of each point of the 3D rim curve by using three views. Specifically, two of these views are chosen close to each other in order to guarantee a good image point matching, while the third view is chosen far from these two views in order to compensate for the error introduced in the triangulation scheme by the short baseline of the two close views. Image point matching among all views is performed by a new method which suitably combines epipolar geometry and cross-correlation. The algorithm is illustrated through experiments with synthetic and real data, which show satisfactory and promising results.


Point Match Short Baseline Epipolar Line Image Versus Epipolar Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bolles, R.C., Baker, H.H., Marimont, D.H.: Epipolar-plane image analysis: An approach to determining structure from motion. International Journal of Computer Vision 1, 7–55 (1987)CrossRefGoogle Scholar
  2. 2.
    Okutomi, M., Kanade, T.: A multiple-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 353–363 (1993)CrossRefGoogle Scholar
  3. 3.
    Cox, I.J., Hingorani, S.L., Rao, S.B.: A maximum likelihood stereo algorithm. Computer Vision Image Understanding 63, 542–567 (1996)CrossRefGoogle Scholar
  4. 4.
    Sun, J., Zheng, N.N., Shum, H.Y.: Stereo matching using belief propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 787–800 (2003)CrossRefGoogle Scholar
  5. 5.
    Van Meerbergen, G., Vergauwen, M., Pollefeys, M., Van Gool, L.: A Hierarchical Symmetric Stereo Algorithm Using Dynamic Programming. International Journal of Computer Vision 47, 275–285 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Koch, R., Pollefeys, M., Gool, L.J.V.: Multi Viewpoint Stereo from Uncalibrated Video Sequences. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, p. 55. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Baumgart, B.G.: Geometric modeling for computer vision. Ph.D Thesis, Stanford University (1974)Google Scholar
  8. 8.
    Laurentini, A.: The Visual Hull Concept for Silhouette-Based Image Understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 150–162 (1994)CrossRefGoogle Scholar
  9. 9.
    Furukawa, Y., Ponce, J.: Carved Visual Hulls for Image-Based Modeling. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 564–577. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Esteban, C.H., Schmitt, F.: Silhouette and stereo fusion for 3D object modeling. Computer Vision and Image Understanding 96, 367–392 (2004)CrossRefGoogle Scholar
  11. 11.
    Isidoro, J., Sclaroff, S.: Stochastic Refinement of the Visual Hull to Satisfy Photometric and Silhouette Consistency Constraints. In: The Ninth IEEE International Conference on Computer Vision, Beijing, China (2003)Google Scholar
  12. 12.
    Huang, Z., Wing Sun, L., Wui Fung, S., Yeung Sam, H.: Shape recovery from turntable sequence using rim reconstruction. Pattern Recognition 41, 295–301 (2008)Google Scholar
  13. 13.
    Cipolla, R., Giblin, P.J.: Visual Motion of Curves and Surfaces. Cambridge University Press, Cambridge (1999)Google Scholar
  14. 14.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  15. 15.
    Boyer, E., Franco, J.S.: A hybrid approach for computing visual hulls of complex objects. In: Computer Vision and Pattern Recongnition, Madison, Wisconsin (2003)Google Scholar
  16. 16.
    Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms. In: Computer Vision and Pattern Recognition, New York, USA (2006)Google Scholar
  17. 17.
    Malis, E., Chesi, G., Cipolla, R.: 2 1/2 D visual servoing with respect to planar contours having complex and unknown shapes. International Journal of Robotics Research 22(10), 841–853 (2003)CrossRefGoogle Scholar
  18. 18.
    Csurka, G., Demirdjian, D., Horaud, R.: Finding the Collineation between Two Projective Reconstructions. Computer Vision and Image Understanding 75, 260–268 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jian Zhang
    • 1
  • Fei Mai
    • 1
  • Y. S. Hung
    • 1
  • G. Chesi
    • 1
  1. 1.The University of Hong KongHong Kong

Personalised recommendations