Visual Intention Detection for Wheelchair Motion

  • T. Luhandjula
  • E. Monacelli
  • Y. Hamam
  • B. J. van Wyk
  • Q. Williams
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5876)

Abstract

This paper describes a visual interface that recognizes the command request of a person by inferring the intention to travel in a desired direction at a certain speed from the person’s head movements. A rotation and a vertical motion indicate the intent to change direction and speed respectively. The context for which this solution is intended is that of wheelchair bound individuals. This paper describes work in progress that provides a proof of concept tested on static images. Results show that the symmetry property of the head can be used to detect a change in its position and can therefore serve as a visual intent indicator. The solution described in this paper, focusing on the specific task of head pose estimation, intends to provide a contribution to the realisation of an enabled environment allowing people with severe disabilities and the elderly to be more independent and active in society.

Keywords

Head pose estimation intention intention detection visual interface enabled environment disabilities intention curve 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luhandjula, K.T., van Wyk, B.J., Kith, K., van Wyk, M.A.: Eye detection for fatigue assessment. In: Proceeding of the Seventeenth International Symposium of the Pattern Recognition Society of South Africa, Parys, South Africa (2006)Google Scholar
  2. 2.
    Kanno, T., Nakata, K., Furuta, K.: Method for team intention inference. Human-Computer Studies 58, 393–413 (2003)CrossRefGoogle Scholar
  3. 3.
    Ma, B., Zhang, W., Shan, S., Chen, X., Gao, W.: Robust Head Pose Estimation using LGBP. In: Proceedings of the 18th International Conference on Pattern Recognition, vol. 2, pp. 512–515 (2006)Google Scholar
  4. 4.
    Vatahska, T., Bennewitz, M., Behnke, S.: Feature-based Head Pose Estimation from Images. In: Proceedings of the IEEE-RAS 7th International Conference on Humanoid Robots (Humanoids), Pittsburgh, USA (2007)Google Scholar
  5. 5.
    Fitzpatrick, P.: Head pose estimation without manual initialization. Term Paper for MIT Course. MIT, Cambridge (2001)Google Scholar
  6. 6.
    Gourier, N., Maisonnasse, J., Hall, D., Crowley, J.L.: Head Pose Estimation on Low Resolution Images. Perception, recognition and integration for interactive environments (2006)Google Scholar
  7. 7.
    Tu, J., Fu, Y., Hu, Y., Huang, T.: Evaluation of Head Pose Estimation for Studio Data. In: Stiefelhagen, R., Garofolo, J.S. (eds.) CLEAR 2006. LNCS, vol. 4122, pp. 281–290. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Christensen, H.V., Garcia, J.C.: Book Infrared Non-Contact Head Sensor, for Control of Wheelchair Movements. In: Pruski, A., Knops, H. (eds.) Assistive Technology: From Virtuality to Reality, pp. 336–340. IOS Press, Amsterdam (2003)Google Scholar
  9. 9.
    Kuno, Y., Shimada, N., Shirai, Y.: Look where you are going [robotic wheelchair]. IEEE Robotics & Automation Magazine 10(1), 26–34 (2003)CrossRefGoogle Scholar
  10. 10.
    Matsumotot, Y., Ino, T., Ogsawara, T.: Development of intelligent wheelchair system with face and gaze based interface. In: Proceedings of the 10th IEEE International Workshop on Robot and Human Interactive Communication, Paris, France, pp. 262–267 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • T. Luhandjula
    • 1
    • 2
  • E. Monacelli
    • 3
  • Y. Hamam
    • 1
  • B. J. van Wyk
    • 1
  • Q. Williams
    • 2
  1. 1.French South African Technical Institute in Electronics at the Tshwane University of TechnologyPretoriaRSA
  2. 2.Meraka Institute at the Council for Scientific and Industrial ResearchPretoriaRSA
  3. 3.LISV LaboratoryUniversité de Versailles St-Quentin-en-YvelinesFrance

Personalised recommendations