Advertisement

Visualization of the Molecular Dynamics of Polymers and Carbon Nanotubes

  • Sidharth Thakur
  • Syamal Tallury
  • Melissa A. Pasquinelli
  • Theresa-Marie Rhyne
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5876)

Abstract

Research domains that deal with complex molecular systems often employ computer-based thermodynamics simulations to study molecular interactions and investigate phenomena at the nanoscale. Many visual and analytic methods have proven useful for analyzing the results of molecular simulations; however, these methods have not been fully explored in many emerging domains. In this paper we explore visual-analytics methods to supplement existing standard methods for studying the spatial-temporal dynamics of polymer-nanotube interface. Our methods are our first steps towards the overall goal of understanding macroscopic properties of the composites by investigating dynamics and chemical properties of the interface. We discuss a standard computational approach for comparing polymer conformations using numerical measures of similarities and present matrix- and graph-based representations of the similarity relationships for some polymer structures.

Keywords

Molecular Conformation Backbone Atom Polymer Conformation Visual Molecular Dynamics Complex Molecular System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M.: Chemistry of carbon nanotubes. Chemical Reviews 106, 1105–1136 (2006)CrossRefGoogle Scholar
  2. 2.
    Tallury, S.S., Pasquinelli, M.A.: Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes (Submitted to J Phys Chem B)Google Scholar
  3. 3.
    Tuzun, R., Noid, D., Sumpter, B., Christopher, E.: Recent advances in polymer molecular dynamics simulation and data analysis. Macromol. Theory Simul. 6, 855–880 (1997)CrossRefGoogle Scholar
  4. 4.
    Yang, H., Chen, Y., Liu, Y., Cai, W.S., Li, Z.S.: Molecular dynamics simulation of polyethylene on single wall carbon nanotube. J. Chem. Phys. 127, 94902 (2007)CrossRefGoogle Scholar
  5. 5.
    Fujiwara, S., Sato, T.: Molecular dynamics simulations of structural formation of a single polymer chain: Bond-orientational order and conformational defects. J. Chem. Phys. 107, 613–622 (1997)CrossRefGoogle Scholar
  6. 6.
    Zheng, Q., Xue, Q., Yan, K., Hao, L., Li, Q., Gao, X.: Investigation of molecular interactions between swnt and polyethylene/polypropylene/polystyrene/polyaniline molecules. Journal of Physical Chemistry C 111, 4628–4635 (2007)CrossRefGoogle Scholar
  7. 7.
    Gurevitch, I., Srebnik, S.: Monte carlo simulation of polymer wrapping of nanotubes. Chemical Physics Letters 444, 96–100 (2007)CrossRefGoogle Scholar
  8. 8.
    Flory, P.J.: Statistical Mechanics Of Chain Molecules. Hanser Publishers (1989)Google Scholar
  9. 9.
    Callahan, T.J., Swanson, E., Lybrand, T.P.: Md display: An interactive graphics program for vis of md trajectories. J Mol Graph 14, 39–41 (1996)CrossRefGoogle Scholar
  10. 10.
    Schmidt-Ehrenberg, J., Baum, D., Hege, H.C.: Visualizing dynamic molecular conformations. In: IEEE Vis 2002, pp. 235–242. IEEE Comp. Soc. Press, Los Alamitos (2002)CrossRefGoogle Scholar
  11. 11.
    Bidmon, K., Grottel, S., Bös, F., Pleiss, J., Ertl, T.: Visual abstractions of solvent pathlines near protein cavities. Comput. Graph. Forum 27, 935–942 (2008)CrossRefGoogle Scholar
  12. 12.
    Humphrey, W., Dalke, A., Schulten, K.: VMD – Visual Molecular Dynamics. Journal of Molecular Graphics 14, 33–38 (1996)CrossRefGoogle Scholar
  13. 13.
    Smith, W.: Guest editorial: Dl_poly-applications to molecular simulation ii. Molecular Simulation 12, 933–934 (2006)CrossRefGoogle Scholar
  14. 14.
    Huitema, H., van Liere, R.: Interactive visualization of protein dynamics. In: IEEE Vis, pp. 465–468. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  15. 15.
    Best, C., Hege, H.C.: Visualizing and identifying conformational ensembles in molecular dynamics trajectories. Computing in Science and Engg. 4, 68–75 (2002)CrossRefGoogle Scholar
  16. 16.
    Yang, H., Parthasarathy, S., Ucar, D.: A spatio-temporal mining approach towards summarizing and analyzing protein folding trajectories. Alg. Mol. Bio. 2, 3 (2007)CrossRefGoogle Scholar
  17. 17.
    Grottel, S., Reina, G., Vrabec, J.: Visual verification and analysis of cluster detection for molecular dynamics. IEEE TVCG 13, 1624–1631 (2007)Google Scholar
  18. 18.
    Shenkin, P.S., McDonald, D.Q.: Cluster analysis of molecular conformations. J. Comput. Chem. 15, 899–916 (1994)CrossRefGoogle Scholar
  19. 19.
    Maggiora, G., Shanmugasundaram, V.: Molecular similarity measures. Methods Mol. Biol. 275, 1–50 (2004)CrossRefGoogle Scholar
  20. 20.
    Wu, H.M., Tzeng, S., Chen, C.H.: Matrix Visualization. In: Handbook of Data Visualization, pp. 681–708. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Chema, D., Becker, O.M.: A method for correlations analysis of coordinates: Applications for molecular conformations. JCICS 42, 937–946 (2002)Google Scholar
  22. 22.
    Kruskal, J.: Multidimensional scaling: A numerical method. Psychometrica 29, 115–129 (1964)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    DeJordy, R., Borgatti, S.P., Roussin, C., Halgin, D.S.: Visualizing proximity data. Field Methods 19, 239–263 (2007)CrossRefGoogle Scholar
  24. 24.
    Herman, I., Society, I.C., Melanon, G., Marshall, M.S.: Graph visualization and navigation in information visualization: a survey. IEEE TVCG 6, 24–43 (2000)Google Scholar
  25. 25.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31, 7–15 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Andrecut, M.: Molecular dynamics multidimensional scaling. Physics Letters A 373, 2001–2006 (2009)CrossRefGoogle Scholar
  27. 27.
    Agrafiotis, D.K., Rassokhin, D.N., Lobanov, V.S.: Multidim. scaling and visualization of large molecular similarity tables. J. Comput. Chem. 22, 488–500 (2001)Google Scholar
  28. 28.
    Batagelj, V., Mrvar, A.: Pajek - program for large network analysis. Connections 21, 47–57 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Sidharth Thakur
    • 1
  • Syamal Tallury
    • 2
  • Melissa A. Pasquinelli
    • 2
  • Theresa-Marie Rhyne
    • 1
  1. 1.Renaissance Computing InstituteUSA
  2. 2.College of TextilesNorth Carolina State UniversityUSA

Personalised recommendations