Advertisement

A Variational Approach to Semiautomatic Generation of Digital Terrain Models

  • Markus Unger
  • Thomas Pock
  • Markus Grabner
  • Andreas Klaus
  • Horst Bischof
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5876)

Abstract

We present a semiautomatic approach to generate high quality digital terrain models (DTM) from digital surface models (DSM). A DTM is a model of the earths surface, where all man made objects and the vegetation have been removed. In order to achieve this, we use a variational energy minimization approach. The proposed energy functional incorporates Huber regularization to yield piecewise smooth surfaces and an L1 norm in the data fidelity term. Additionally, a minimum constraint is used in order to prevent the ground level from pulling up, while buildings and vegetation are pulled down. Being convex, the proposed formulation allows us to compute the globally optimal solution. Clearly, a fully automatic approach does not yield the desired result in all situations. Therefore, we additionally allow the user to affect the algorithm using different user interaction tools. Furthermore, we provide a real-time 3D visualization of the output of the algorithm which additionally helps the user to assess the final DTM. We present results of the proposed approach using several real data sets.

Keywords

Graphic Processing Unit Digital Terrain Model Digital Surface Model Minimum Constraint Graphic Processing Unit Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belliss, S., Mcneill, S., Barringer, J., Pairman, D., North, H.: Digital terrain modelling for exploration and mining. In: Proceedings on New Zealand Minerals & Mining Conference (2000)Google Scholar
  2. 2.
    Paparoditis, N., Boudet, L., Tournaire, O.: Automatic man-made object extraction and 3D scene reconstruction from geomatic-images. Is there still a long way to go? In: Urban Remote Sensing Joint Event (2007)Google Scholar
  3. 3.
    Champion, N., Matikainen, L., Rottensteiner, F., Liang, X., Hyyppä, J.: A test of 2D building change detection methods: Comparison, evaluation and perspectives. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 37 (2008)Google Scholar
  4. 4.
    Eckstein, W., Munkelt, O.: Extracting objects from digital terrain models. In: Remote Sensing and Reconstruction for Three-Dimensional Objects and Scenes, SPIE, pp. 43–51 (1995)Google Scholar
  5. 5.
    Weidner, U., Förstner, W.: Towards automatic building extraction from high-resolution digital elevation models. ISPRS Journal of Photogrammetry and Remote Sensing 50, 38–49 (1995)CrossRefGoogle Scholar
  6. 6.
    Zhang, K., Ching Chen, S., Whitman, D., Ling Shyu, M., Yan, J., Zhang, C., Member, S.: A progressive morphological filter for removing nonground measurements from airborne lidar data. IEEE Transactions on Geoscience and Remote Sensing 41, 872–882 (2003)CrossRefGoogle Scholar
  7. 7.
    Champion, N., Boldo, D.: A robust algorithm for estimating digital terrain models from digital surface models in dense urban areas. In: PCV Photogrammetric Computer Vision (2006)Google Scholar
  8. 8.
    Sohn, G., Dowman, I.: Terrain surface reconstruction by the use of tetrahedron model with the mdl criterion. In: Photogrammetric Computer Vision, A, p. 336 (2002)Google Scholar
  9. 9.
    Rottensteiner, F.: Automatic generation of high-quality building models from lidar data. Computer Graphics and Applications, IEEE 23, 42–50 (2003)CrossRefGoogle Scholar
  10. 10.
    Baillard, C., Maître, H.: 3-D reconstruction of urban scenes from aerial stereo imagery: a focusing strategy. Comput. Vis. Image Underst. 76, 244–258 (1999)CrossRefGoogle Scholar
  11. 11.
    Sithole, G., Vosselman, G.: Filtering of airborne laser scanner data based on segmented point clouds. In: Workshop on Laser Scanning (2005)Google Scholar
  12. 12.
    Baillard, C.: A hybrid method for deriving dtms from urban dems. In: ISPRS International Society for Photogrammetry and Remote Sensing, vol. B3b, p. 109 (2008)Google Scholar
  13. 13.
    Zebedin, L., Klaus, A., Gruber Geymayer, B., Karner, K.: Towards 3D map generation from digital aerial images. ISPRS Journal of Photogrammetry and Remote Sensing 60, 413–427 (2006)CrossRefGoogle Scholar
  14. 14.
    Pock, T., Unger, M., Cremers, D., Bischof, H.: Fast and exact solution of total variation models on the GPU. In: CVPR Workshop on Visual Computer Vision on GPU’s, Anchorage, Alaska, USA (2008)Google Scholar
  15. 15.
    Huber, P.: Robust Statistics. Wiley, New York (1981)zbMATHCrossRefGoogle Scholar
  16. 16.
    Tikhonov, A.: On the stability of inverse problems. Dokl. Akad. Nauk SSSR 39, 195–198 (1943)MathSciNetGoogle Scholar
  17. 17.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)zbMATHCrossRefGoogle Scholar
  18. 18.
    Keeling, S.L.: Total variation based convex filters for medical imaging. Appl. Math. Comput. 139, 101–119 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation–based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28, 1–23 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Rockafellar, R.T.: Convex analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997); Reprint of the 1970 original, Princeton PaperbackszbMATHGoogle Scholar
  21. 21.
    Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition–modeling, algorithms, and parameter selection. Intl. J. of Computer Vision 67, 111–136 (2006)CrossRefGoogle Scholar
  22. 22.
    Chan, T., Esedoglu, S.: Aspects of total variation regularized L 1 function approximation. SIAM Journal of Applied Mathematics 65, 1817–1837 (2004)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Chambolle, A.: Total variation minimization and a class of binary MRF models. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 136–152 (2005)Google Scholar
  24. 24.
    Goldstein, T., Osher, S.: The split bregman method for L 1 regularized problems. UCLA CAM Report 08-29 (2008)Google Scholar
  25. 25.
    NVidia: NVidia CUDA Compute Unified Device Architecture programming guide 2.0. Technical report, NVIDA Corp., Santa Clara, CA, USA (2008)Google Scholar
  26. 26.
    Wernecke, J.: The Inventor Mentor. Addison-Wesley, Reading (1994)Google Scholar
  27. 27.
    Grabner, M.: On-the-fly greedy mesh simplification for 2\(\frac12\)D regular grid data acquisition systems. In: Proceedings Annual Conference of the Austrian Association for Pattern Recognition (AAPR), Graz, Austria, pp. 103–110 (2002)Google Scholar
  28. 28.
    Segal, M., Akeley, K.: The OpenGL graphics system: A specification. Technical report, The Khronos Group Inc. (2009), http://www.opengl.org
  29. 29.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, vol. 1, pp. 384–393 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Markus Unger
    • 1
  • Thomas Pock
    • 1
  • Markus Grabner
    • 1
  • Andreas Klaus
    • 2
  • Horst Bischof
    • 1
  1. 1.Institute for Computer Graphics and VisionGraz University of Technology 
  2. 2.Microsoft Photogrammetry 

Personalised recommendations