Two Step Variational Method for Subpixel Optical Flow Computation

  • Yoshihiko Mochizuki
  • Yusuke Kameda
  • Atsushi Imiya
  • Tomoya Sakai
  • Takashi Imaizumi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5876)


We develop an algorithm for the super-resolution optical flow computation by combining variational super-resolution and the variational optical flow computation. Our method first computes the gradient and the spatial difference of a high resolution images from these of low resolution images directly, without computing any high resolution images. Second the algorithm computes optical flow of high resolution image using the results of the first step.


Particle Image Velocimetry High Resolution Image Reduction Operation Step Variational Dual Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Youla, D.: Generalized image restoration by the method of alternating orthogonal projections. IEEE Transactions on Circuits and Systems 25, 694–702 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Stark, H. (ed.): Image Recovery: Theory and Application. Academic Press, New York (1992)Google Scholar
  3. 3.
    Amiz, T., Lubetzky, E., Kiryati, N.: Coarse to over-fine optical flow estimation. Pattern recognition 40, 2496–2503 (2007)CrossRefGoogle Scholar
  4. 4.
    Ruhnau, P., Knhlberger, T., Schnoerr, C., Nobach, H.: Variatinal optical flow estimation for particle image velocimetry. Experiments in Fluids 38, 21–32 (2005)CrossRefGoogle Scholar
  5. 5.
    Wahba, G., Wendelberger, J.: Some new mathematical methods for variational objective analysis using splines and cross-validation. Monthly Weather Review 108, 36–57 (1980)CrossRefGoogle Scholar
  6. 6.
    Burt, P.J., Andelson, E.H.: The Laplacian pyramid as a compact image coding. IEEE Trans. Communications 31, 532–540 (1983)CrossRefGoogle Scholar
  7. 7.
    Hwan, S., Hwang, S.-H., Lee, U.K.: A hierarchical optical flow estimation algorithm based on the interlevel motion smoothness constraint. Pattern Recognition 26, 939–952 (1993)CrossRefGoogle Scholar
  8. 8.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)CrossRefGoogle Scholar
  9. 9.
    Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Computer Surveys 26, 433–467 (1995)CrossRefGoogle Scholar
  10. 10.
    Suter, D.: Motion estimation and vector spline. In: Proceedings of CVPR 1994, pp. 939–942 (1994)Google Scholar
  11. 11.
    Amodei, L., Benbourhim, M.N.: A vector spline approximation. Journal of Approximation Theory 67, 51–79 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Benbourhim, M.N., Bouhamidi, A.: Approximation of vectors fields by thin plate splines with tension. Journal of Approximation Theory 136, 198–229 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Suter, D., Chen, F.: Left ventricular motion reconstruction based on elastic vector splines. IEEE Trans. Medical Imaging, 295–305 (2000)Google Scholar
  14. 14.
    Sorzano, C.Ó.S., Thévenaz, P., Unser, M.: Elastic registration of biological images using vector-spline regularization. IEEE Tr. Biomedical Engineering 52, 652–663 (2005)CrossRefGoogle Scholar
  15. 15.
    Steidl, G., Didas, S., Neumann, J.: Splines in higher order TV regularization. IJCV 70, 241–255 (2006)CrossRefGoogle Scholar
  16. 16.
    Grenander, U., Miller, M.: Computational anatomy: An emerging discipline. Quarterly of applied mathematics 4, 617–694 (1998)MathSciNetGoogle Scholar
  17. 17.
    Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. Journal of Mathematical Imaging and Vision 14, 245–255 (2001)zbMATHCrossRefGoogle Scholar
  18. 18.
    Weickert, J., Bruhn, A., Papenberg, N., Brox, T.: Variational optic flow computation: From continuous models to algorithms. In: Proceedings of International Workshop on Computer Vision and Image Analysis, IWCVIA 2003 (2003)Google Scholar
  19. 19.
    Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. International Journal of Computer Vision 67, 141–158 (2006)CrossRefGoogle Scholar
  20. 20.
    Werner, T., Pock, T., Cremers, D., Bischof, H.: An unbiased second-order prior for high-accuracy motion estimation. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 396–405. Springer, Heidelberg (2008)Google Scholar
  21. 21.
    Rodŕguez, P., Wohlberg, B.: Efficient minimization method for a generalized total variation functional. IEEE Trans. Image Processing 18, 322–332 (2009)Google Scholar
  22. 22.
    Schmidt, M., Fung, G., Rosales, R.: Fast optimization methods for L1 regularization: A comparative study and two new approaches. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 286–297. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Pock, T., Urschler, M., Zach, C., Beichel, R.R., Bischof, H.: A duality based algorithm for TV-L 1-optical-flow image registration. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 511–518. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L 1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yoshihiko Mochizuki
    • 1
  • Yusuke Kameda
    • 1
  • Atsushi Imiya
    • 2
  • Tomoya Sakai
    • 2
  • Takashi Imaizumi
    • 2
  1. 1.Graduate School of Advanced Integration ScienceChiba University 
  2. 2.Institute of Media and Information TechnologyChiba UniversityChibaJapan

Personalised recommendations