Data Gathering for Gesture Recognition Systems Based on Mono Color-, Stereo Color- and Thermal Cameras

  • Jörg Appenrodt
  • Ayoub Al-Hamadi
  • Mahmoud Elmezain
  • Bernd Michaelis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5899)


In this paper, we present our results to build an automatic gesture recognition system using different types of cameras to compare them in reference to their features for segmentation. Normally, the images of a mono color camera system are mostly used as input data in the research area of gesture recognition. In comparison to that, the analysis results of a stereo color camera and a thermal camera system are used to determine the advantages and disadvantages of these camera systems. With this basics, a real-time gesture recognition system is build to classify alphabets (A-Z) and numbers (0-9) with an average recognition rate of 98% using Hidden Markov Models (HMM).


Gesture Recognition Stereo Camera System Thermal Camera Computer Vision & Image Processing Pattern Recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Binh, N., Enokida, S., Ejima, T.: Real-time hand tracking and gesture recognition system. ICGST International Journal on GVIP 06, 31–39 (2006)Google Scholar
  2. 2.
    Elmezain, M., Al-Hamadi, A., Michaelis, B.: Real-time capable system for hand gesture recognition using hidden markov models in stereo color image sequences. The Journal of WSCG 16, 65–72 (2008)Google Scholar
  3. 3.
    Chen, X., Flynn, P., Bowyer, K.: Ir and visible light face recognition. Comput. Vis. Image Underst. 99(3), 332–358 (2005)CrossRefGoogle Scholar
  4. 4.
    Kong, S., Heo, J., Abidi, B., Paik, J., Abidi, M.A.: Recent advances in visual and infrared face recognition - a review. Journal of CVIU 97, 103–135 (2005)Google Scholar
  5. 5.
    Selinger, A., Socolinsky, D.: Appearance-based facial recognition using visible and thermal imagery: A comparative study. Technical report, Equinox Corp (2006)Google Scholar
  6. 6.
    Socolinsky, D., Selinger, A.: Thermal face recognition in an operational scenario. In: IEEE Conference on CVPR, pp. 1012–1019 (2004)Google Scholar
  7. 7.
    Socolinsky, D., Selinger, A.: Thermal face recognition over time. In: International Conference on Pattern Recognition (ICPR), vol. 4, pp. 187–190 (2004)Google Scholar
  8. 8.
    Lawrence, R.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proceeding of the IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  9. 9.
    Point Grey Research, Triclops Stereo Vision System Manual Version 3.1 (2009),
  10. 10.
    Elmezain, M., Al-Hamadi, A., Appenrodt, J., Michaelis, B.: A hidden markov model-based continuous gesture recognition system for hand motion trajectory. In: International Conference on Pattern Recognition (ICPR), pp. 1–4 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jörg Appenrodt
    • 1
  • Ayoub Al-Hamadi
    • 1
  • Mahmoud Elmezain
    • 1
  • Bernd Michaelis
    • 1
  1. 1.Institute for Electronics, Signal Processing and CommunicationsOtto-von-Guericke-University MagdeburgGermany

Personalised recommendations