Packaging of Silicon Photonic Devices

  • Peter O’Brien
  • Lee Carrol
  • Cormac Eason
  • Jun Su Lee
Part of the Topics in Applied Physics book series (TAP, volume 122)


The demand for photonic systems based on Silicon CMOS technology is driven by its ability to satisfy demands in large markets, particularly for telecoms, datacoms and sensing applications. Device fabrication based on CMOS wafer-scale processes can meet this demand. However, photonic packaging can be a device-by-device process which is difficult to scale to high volumes. Packaging challenges remain in areas such as fiber-array coupling, laser source and electronic integration, and efficient thermal management. This chapter reviews these challenges and solutions that address them. It also reviews efforts to develop common photonic packaging design rules, which if implemented at the device layout stage, can greatly simplify the overall manufacturing process and help reduce production costs.


Information Communication Technology Hybrid Integration Silicon Photonic Active Alignment High Integration Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Soref, The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). doi: 10.1109/JSTQE.2006.883151 CrossRefGoogle Scholar
  2. 2.
    M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A.E.-J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, The Road to Affordable, Large-Scale Silicon Photonics. Opt. Photonics News 24(9), 32–39 (2013). doi: 10.1364/OPN.24.9.000032
  3. 3.
    L. Zimmermann, G.B. Preve, T. Tekin, T. Rosin, K. Landles, Packaging and assembly for integrated photonics—review of the ePIXpack photonics packaging platform. IEEE J. Sel. Top. Quantum Electron. 17(3), 645–651 (2011). doi: 10.1109/JSTQE.2010.2084992 CrossRefGoogle Scholar
  4. 4.
    L. Tsybeskov, D.J. Lockwood, M. Ichikawa, Silicon photonics: CMOS going optical. Scan. Issue—Proc. IEEE 97(7), 1161–1165 (2009). doi: 10.1109/JPROC.2009.2021052 Google Scholar
  5. 5.
    C. Kopp, S. Bernabé, B.B. Bakir, J.-M. Fedeli, R. Orobtchouk, F. Schrank, H. Porte, L. Zimmermann, T. Tekin, Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging. IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011). doi: 10.1109/JSTQE.2010.2071855 CrossRefGoogle Scholar
  6. 6.
    A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W.Z. Lo, M. Paniccia, Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers, in Integrated Photonics Research, Silicon and Nanophotonics Conference (PDIWI5), Optical Society of America, July 2010Google Scholar
  7. 7.
    D. Taillaert, H. Chong, P.I. Borel, L.H. Frandsen, R.M De La Rue, R. Baets, A compact two-dimensional grating coupler used as a polarization splitter. IEEE Photonics Technol. Lett. 15(9), 1249–1251 (2003). doi: 10.1109/LPT.2003.816671
  8. 8.
    H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, Silicon photonic circuit with polarization diversity. Opt. Express 16(7), 4872–4880 (2008). doi: 10.1364/OE.16.004872 CrossRefADSGoogle Scholar
  9. 9.
    J. Song, H. Fernando, B. Roycroft, B. Corbett, F. Peters, Practical design of lensed fibers for semiconductor laser packaging using laser welding technique. J. Lightwave Technol. 27(11), 1533–1539 (2009). doi: 10.1109/JLT.2009.2014252 CrossRefADSGoogle Scholar
  10. 10.
    G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, D. Van Thourhout, Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 17(3), 571–580 (2011). doi: 10.1109/JSTQE.2010.2069087 CrossRefGoogle Scholar
  11. 11.
    F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, R. Baets, Compact focusing grating couplers for silicon-on-insulator integrated circuits. IEEE Photonics Technol. Lett. 19(23), 1919–1921 (2007). doi: 10.1109/LPT.2007.908762 CrossRefADSGoogle Scholar
  12. 12.
    D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, R. Baets, Grating couplers for coupling between optical fibers and nanophotonic waveguides. Jpn. J. Appl. Phys. 45(8), 6071–6077 (2006). doi: 10.1143/JJAP.45.6071 CrossRefADSGoogle Scholar
  13. 13.
  14. 14.
  15. 15.
    L. Carroll, D. Gerace, I. Cristiani, L. Andreani, Optimizing polarization-diversity couplers for Si-photonics: reaching the −1 dB coupling efficiency threshold. Opt. Express 22(12), 14769–14781 (2014). doi: 10.1364/OE.22.014769 CrossRefADSGoogle Scholar
  16. 16.
    D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, G. Roelkens, High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform. Opt. Express 18(17), 18278–18283 (2010). doi: 10.1364/OE.18.018278 CrossRefADSGoogle Scholar
  17. 17.
    W. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, J. Burghartz, Bridging the gap between optical fibers and silicon photonic integrated circuits. Opt. Express 22(2), 1277–1286 (2014). doi: 10.1364/OE.22.001277 CrossRefADSGoogle Scholar
  18. 18.
    B. Snyder, P. O’Brien, Planar fiber packaging method for silicon photonic integrated circuits, in Optical Fiber Communication Conference, Optical Society of America (OM2E.5), March 2012. doi: 10.1364/OFC.2012.OM2E.5
  19. 19.
    C. Li, K. Chee, J. Tao, H. Zhang, M. Yu, G. Lo, Silicon photonics packaging with lateral fiber coupling to apodized grating coupler embedded circuit. Opt. Express 22(20), 24235–24240 (2014). doi: 10.1364/OE.22.024235 CrossRefADSGoogle Scholar
  20. 20.
    B. Snyder, P. O’Brien, Packaging process for grating-coupled silicon photonic waveguides using angle-polished fibers. IEEE Trans. Compon. Packag. Manuf. Technol. 3(6), 954–959 (2013). doi: 10.1109/TCPMT.2012.2237052 CrossRefGoogle Scholar
  21. 21.
    N. Pavarelli, J. Lee, M. Rensing, C. Scarcella, S. Zhou, P. Ossieur, P. O’Brien, Optical and electronic packaging processes for silicon photonic systems. J. Lightwave Technol. 33(5), 991–997 (2015). doi: 10.1109/JLT.2015.2390675 CrossRefADSGoogle Scholar
  22. 22.
    S. McNab, N. Moll, Y. Vlasov, Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express 11(22), 2927–2939 (2003). doi: 10.1364/OE.11.002927 CrossRefADSGoogle Scholar
  23. 23.
    T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita, Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres. Electron. Lett. 38(25), 1669–1670 (2002). doi: 10.1049/el:20021185 CrossRefGoogle Scholar
  24. 24.
    M. Pu, L. Liu, H. Ou, K. Yvind, J.M. Hvam, Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide. Opt. Commun. 283(19), 3678–3682 (2010). doi: 10.1016/j.optcom.2010.05.034 CrossRefADSGoogle Scholar
  25. 25.
    J. Galán, P. Sanchis, G. Sánchez, J. Martí, Polarization insensitive low-loss coupling technique between SOI waveguides and high mode field diameter single-mode fibers. Opt. Express 15(11), 7058–7065 (2007). doi: 10.1364/OE.15.007058 CrossRefADSGoogle Scholar
  26. 26.
    R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. La Porta, N. Meier, I. Soganci, J. Weiss, B. Offrein, Polymer waveguides for electro-optical integration in data centers and high-performance computers. Opt. Express 23(4), 4736–4750 (2015). doi: 10.1364/OE.23.004736 CrossRefADSGoogle Scholar
  27. 27.
    M. Papes, P. Cheben, W.N. Ye, J.H. Schmid, D.X. Xu, S. Janz, D. Benedikovic, C.A. Ramos, R. Halir, A. Ortega-Moñux, A. Delâge, V. Vašinek, Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides, in Proceedings of. SPIE (9516), Integrated Optics: Physics and Simulations II (95160 K), May 2015. doi: 10.1117/12.2181547
  28. 28.
    J. Van Campenhout, P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. Fedeli, C. Lagahe, R. Baets, Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express 15(11), 6744–6749 (2007). doi: 10.1364/OE.15.006744
  29. 29.
    S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G. Duan, D. Bordel, J. Fedeli, Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser. Opt. Express 21(3), 3784–3792 (2013). doi: 10.1364/OE.21.003784 CrossRefADSGoogle Scholar
  30. 30.
    H. Park, A.W. Fang, O. Cohen, R. Jones, M.J. Paniccia, J.E. Bowers, A hybrid AlGaInAs–silicon evanescent amplifier. IEEE Photonics Technol. Lett. 19(4), 230–232 (2007). doi: 10.1109/LPT.2007.891188 CrossRefADSGoogle Scholar
  31. 31.
    M. Mack, M. Peterson, S. Gloeckner, A. Narasimha, R. Koumans, P. De Dobbelaere, Method and system for a light source assembly supporting direct coupling to an integrated circuit, US Patent 8,168,939, Filed July 9 2009, Published May 1 2012Google Scholar
  32. 32.
    B. Snyder, B. Corbett, P. O’Brien, hybrid integration of the wavelength-tunable laser with a silicon photonic integrated circuit. J. Lightwave Technol. 31(24), 3934–3942 (2013). doi: 10.1109/JLT.2013.2276740 CrossRefADSGoogle Scholar
  33. 33.
    J. O’Carroll, R. Phelan, B. Kelly, D. Byrne, L. Barry, J. O’Gorman, Wide temperature range 0 < T < 85 °C narrow linewidth discrete mode laser diodes for coherent communications applications. Opt. Express 19(26), B90–B95 (2011). doi: 10.1364/OE.19.000B90 CrossRefGoogle Scholar
  34. 34.
    H. Lu, J.S. Lee, P. Cardile, D. Delbeke, L. Carroll, P. O’Brien, Publication in preparationGoogle Scholar
  35. 35.
    Y. Arakawa, T. Nakamura, Y. Urino, T. Fujita, Silicon photonics for next generation system integration platform. IEEE Commun. Mag. 51(3), 72–77 (2013). doi: 10.1109/MCOM.2013.6476868 CrossRefGoogle Scholar
  36. 36.
    P. Garrou, C. Bower, P. Ramm (eds), Chapter 1: Introduction to 3D integration in Handbook of 3D Integration Vol 1—Technology and Applications of 3D Integrated Circuits, Wiley-VCH, Weinheim (2008). ISBN: 352762306XGoogle Scholar
  37. 37.
    J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, F. Mandorlo, Development of Silicon Photonics Devices Using Microelectronic Tools for the Integration on Top of a CMOS Wafer, Advances in Optical Technologies, Article ID: 412518 (2008). doi: 10.1155/2008/412518
  38. 38.
    T. Baehr-Jones, T. Pinguet, P.L. Guo-Qiang, S. Danziger, D. Prather, M. Hochberg, Myths and rumours of silicon photonics. Nat. Photonics 6, 206–208 (2012). doi: 10.1038/nphoton.2012.66 CrossRefADSGoogle Scholar
  39. 39.
    J.H. Lau, T.G. Yue, Thermal management of 3D IC integration with TSV (through silicon via), in Proceedings of the 59th Electronic Components and Technology Conference, pp. 635–640 (2009). doi: 10.1109/ECTC.2009.5074080
  40. 40.
    J.H. Song, J. Zhang, H. Zhang, C. Li, G.Q. Lo, Si-photonics based passive device packaging and module performance. Opt. Express 19(19), 18020–18028 (2011). doi: 10.1364/OE.19.018020 CrossRefADSGoogle Scholar
  41. 41.
    A.V. Krishnamoorthy, K.W. Goossen, Optoelectronic-VLSI: photonics integrated with VLSI circuits. IEEE J. Sel. Top. Quantum Electron. 4(6), 899–912 (1998). doi: 10.1109/2944.736073 CrossRefGoogle Scholar
  42. 42.
  43. 43.

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Peter O’Brien
    • 1
  • Lee Carrol
    • 1
  • Cormac Eason
    • 1
  • Jun Su Lee
    • 1
  1. 1.Photonics Packaging Group, Tyndall National InstituteUniversity College CorkCorkIreland

Personalised recommendations