Combining Scanning Probe Microscopy and Transmission Electron Microscopy

  • Alexandra Nafari
  • Johan Angenete
  • Krister Svensson
  • Anke Sanz-Velasco
  • Håkan Olin
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

This chapter is a review of an in situ method where a scanning probe microscope (SPM) has been combined with a transmission electron microscope (TEM). By inserting a miniaturized SPM inside a TEM, a large set of open problems can be addressed and, perhaps more importantly, one may start to think about experiments in a new kind of laboratory, an in situ TEM probing laboratory, where the TEM is transformed from a microscope for still images to a real-time local probing tool. In this method, called TEMSPM, the TEM is used for imaging and analysis of a sample and SPM tip, while the SPM is used for probing of electrical and mechanical properties or for local manipulation of the sample. This chapter covers both instrumental and applicational aspects of TEMSPM.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Iwatsuki, K. Murooka, S. Kitamura, K. Takayanagi, Y. Harada, Scanning tunneling microscope (STM) for conventional transmission electron microscope (TEM). J. Electron Microsc. 40, 48–53 (1991)Google Scholar
  2. 2.
    Y. Naitoh, K. Takayanagi, M. Tomitori, Visualization of tip-surface geometry at atomic distance by TEM-STM holder. Surf. Sci. 357–358, 208–212 (1996)CrossRefGoogle Scholar
  3. 3.
    D. Erts, A. Lohmus, R. Lohmus, H. Olin, Instrumentation of STM and AFM combined with transmission electron microscope. Appl. Phys. A Mater. Sci. Process. 72, S71–S74 (2001)CrossRefGoogle Scholar
  4. 4.
    K. Takayanagi, Y. Kondo, H. Ohnishi, Suspended gold nanowires: ballistic transport of electrons. JSAP Int. 3, 3–8 (2001)Google Scholar
  5. 5.
    M. Sveningsson, K. Hansen, K. Svensson, E. Olsson, E. Campbell, Quantifying temperature-enhanced electron field emission from individual carbon nanotubes. Phys. Rev. B. 72 (2005)Google Scholar
  6. 6.
    Z.L. Wang, P. Poncharal, W.A. de Heer, Nanomeasurements in transmission electron microscopy. Microsc. Microanal. 6, 224–230 (2000)Google Scholar
  7. 7.
    Z.L. Wang, P. Poncharal, W.A. de Heer, Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. J. Phys. Chem. Solids. 61, 1025–1030 (2000)CrossRefGoogle Scholar
  8. 8.
    Z.L. Wang, R.P. Gao, Z.W. Pan, Z.R. Dai, Nano-scale mechanics of nanotubes, nanowires, and nanobelts. Adv. Eng. Mater. 3, 657 (2001)CrossRefGoogle Scholar
  9. 9.
    X. Han, Z. Zang, Z.L. Wang, Experimental nanomechanics of onedimensional nanomaterials by in situ microscopy. Nano: Briefs Rev. 2, 249–271 (2007)Google Scholar
  10. 10.
    D. Golberg, P.M. Costa, M. Mitome, Y. Bando, Properties and engineering of individual inorganic nanotubes in a transmission electron microscope. J. Mater. Chem. 19, 909 (2009)CrossRefGoogle Scholar
  11. 11.
    L. Dong, A. Subramanian, B.J. Nelson, Carbon nanotubes for nanorobotics. Nano Today. 2, 12–21 (2007)Google Scholar
  12. 12.
    L. Dong, K. Shou, D.R. Frutiger, A. Subramanian, L. Zhang, B.J. Nelson, X. Tao, X. Zhang, Engineering multiwalled carbon nanotubes inside a transmission electron microscope using nanorobotic manipulation. IEEE Trans. Nanotechnol. 7, 508–517 (2008)CrossRefGoogle Scholar
  13. 13.
    L. Dong, X. Tao, L. Zhang, X. Zhang, B.J. Nelson, Plumbing the depths of the nanometer scale. IEEE Nanotechnol. Mag. 4, 13–22 (2010)CrossRefGoogle Scholar
  14. 14.
    “MRS BULLENTIN,” MRS Bull. 33 (2008)Google Scholar
  15. 15.
    M. Kociak, M. Kobylko, S. Mazzucco, R. Bernard, A.Y. Kasumov, C. Colliex, TEM nanolaboratory. Imaging Microsc. 10, 26–27 (2008)CrossRefGoogle Scholar
  16. 16.
    F. Banhart, In-Situ Electron Microscopy at High Resolution (World Scientific, Singapore, 2008)CrossRefGoogle Scholar
  17. 17.
    E.A. Stach, In-situ TEM – a tool for quantitative observations of deformation behavior in thin films and nano-structured materials. Workshop on new materials science enabled by in situ microscopies, DOE BES, 2001Google Scholar
  18. 18.
    E.A. Stach, T. Freeman, A. Minor, D.K. Owen, J. Cumings, M. Wall, T. Chraska, R. Hull, J. Morris, A. Zettl, U. Dahmen, Development of a nanoindenter for in situ transmission electron microscopy. Microsc. Microanal. 7, 507–517 (2001)Google Scholar
  19. 19.
    A.M. Minor, S.A. Asif, Z. Shan, E.A. Stach, E. Cyrankowski, T.J. Wyrobek, O.L. Warren, A new view of the onset of plasticity during the nanoindentation of aluminium. Nat. Mater. 5, 697–702 (2006)CrossRefGoogle Scholar
  20. 20.
    R. Gupta, R.E. Stallcup, in Introduction to In Situ Nanomanipulation for Nanomaterials Engineering, ed. by W. Zhou, Z.L. Wang. Scanning Microscopy for Nanotechnology – Techniques and Applications (Springer, Heidelberg, 2007), pp. 192–223Google Scholar
  21. 21.
    T. Kizuka, H. Ohmi, T. Sumi, K. Kumazawa, S. Deguchi, M. Naruse, S. Fujusawa, A. Yabe, Y. Enomoto, Simultaneous observation of millisecond dynamics in atomistic structure, force and conductance on the basis of transmission electron microscopy. Jpn. J. Appl. Phys. 40, 170–173 (2001)CrossRefGoogle Scholar
  22. 22.
    R. Young, The topografiner: an instrument for measuring surface microtopography. Rev. Sci. Instrum. 43, 999 (1972)CrossRefGoogle Scholar
  23. 23.
    G. Binnig, H. Rohrer, Surface imaging by scanning tunneling microscopy. Ultramicroscopy. 11, 157–160 (1983)CrossRefGoogle Scholar
  24. 24.
    C.J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, Oxford, 1993)Google Scholar
  25. 25.
    C. Gerber, G. Binnig, H. Fuchs, O. Marti, H. Rohrer, Scanning tunneling microscope combined with a scanning electron microscope. Rev. Sci. Instrum. 57, 221–224 (1986)CrossRefGoogle Scholar
  26. 26.
    T. Ichinokawa, Y. Miyazaki, Y. Koga, Scanning tunneling microscope combined with scanning electron microscope. Ultramicroscopy. 23, 115–118 (1987)CrossRefGoogle Scholar
  27. 27.
    J.C. Spence, A scanning tunneling microscope in a side-entry holder for reflection electron microscopy in the Philips EM400. Ultramicroscopy. 25, 165–169 (1988)CrossRefGoogle Scholar
  28. 28.
    W.K. Lo, J.C. Spence, Investigation of STM image artifacts by in situ reflection electron microscopy. Ultramicroscopy, 48, 433–444 (1993)CrossRefGoogle Scholar
  29. 29.
    H. Ohnishi, Y. Kondo, K. Takayanagi, UHV electron microscope and simultaneous STM observation of gold stepped surfaces. Surf. Sci. 415, L1061–L1064 (1998)CrossRefGoogle Scholar
  30. 30.
    Y. Oshima, K. Mouri, H. Hirayama, K. Takayanagi, Development of a miniature STM holder for study of electronic conductance of metal nanowires in UHV–TEM. Surf. Sci. 531, 209–216 (2003)CrossRefGoogle Scholar
  31. 31.
    Z.L. Wang, P. Poncharal, W.A. de Heer, Nanomeasurements of individual carbon nanotubes by in situ TEM. Pure Appl. Chem. 72, 209–219 (2000)CrossRefGoogle Scholar
  32. 32.
    R. Lohmus, D. Erts, A. Lohmus, K. Svensson, Y. Jompol, H. Olin, STM and AFM instrumentation combined with transmission electron microscope. Phys. Low-Dimensional Struct. 3–4, 81–89 (2001)Google Scholar
  33. 33.
    M.I. Lutwyche, Y. Wada, Manufacture of micromechanical scanning tunneling microscopes for observation of the tip avex in a transmission electron microscope. Sens. Actuat. A: Phys. 48, 127–136 (1995)CrossRefGoogle Scholar
  34. 34.
    Y. Xu, N.C. Macdonald, S.A. Miller, Integrated micro-scanning tunneling microscope. Appl. Phys. Lett. 67, 2305 (1995)CrossRefGoogle Scholar
  35. 35.
    K. Svensson, Y. Jompol, H. Olin, E. Olsson, Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion. Rev. Sci. Instrum. 74, 4945 (2003)CrossRefGoogle Scholar
  36. 36.
    “Nanofactory Instruments; http://www.nanofactory.com.”
  37. 37.
    J.C. Spence, W. Lo, M. Kuwabara, Observation of the graphite surface by reflection electron microscopy during STM operation. Ultramicroscopy, 33, 69–82 (1990)CrossRefGoogle Scholar
  38. 38.
    W. Lo, J.C. Spence, Investigation of STM image artifacts by in-situ reflection electron microscopy. Ultramicroscopy, 48, 433–444 (1993)CrossRefGoogle Scholar
  39. 39.
    H. Ohnishi, Y. Kondo, K. Takayanagi, Quantized conductance through individual rows of suspended gold atoms. Nature. 395, 2–5 (1998)CrossRefGoogle Scholar
  40. 40.
    N. Agraït, A.L. Yeyati, J.M. van Ruitenbeek, Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003)CrossRefGoogle Scholar
  41. 41.
    Y. Kurui, Y. Oshima, M. Okamoto, K. Takayanagi, Integer conductance quantization of gold atomic sheets. Phys. Rev. B. 77 (2008)Google Scholar
  42. 42.
    Y. Kurui, Y. Oshima, M. Okamaoto, K. Takayanagi, Conductance quantization/dequantization in gold nanowires due to multiple reflection at the interface. Phys. Rev. B. 79, 165414 (2009)CrossRefGoogle Scholar
  43. 43.
    K. Takayanagi, Y. Oshima, Y. Kurui, Conductance quantization of gold nanowires as a ballistic conductor. Phys. Rev. Lett. 2, 47–50 (2009)Google Scholar
  44. 44.
    D. Erts, H. Olin, L. Ryen, E. Olsson, A. Thölén, Maxwell and Sharvin conductance in gold point contacts investigated using TEM-STM. Phys. Rev. B, 61, 12725–12727 (2000)CrossRefGoogle Scholar
  45. 45.
    Z. Aslam, M. Abraham, R. Brydson, A. Brown, B. Rand, Initial studies using a combined TEM – scanning tunnelling microscopy (STM) side entry sample holder. J. Phys.: Conf. Ser. 26, 54–58 (2006)Google Scholar
  46. 46.
    Z. Aslam, M. Abraham, A. Brown, B. Rand, R. Brydson, Electronic property investigations of single-walled carbon nanotube bundles in situ within a transmission electron microscope: an evaluation. J. Microsc. 231, 144–155 (2008)CrossRefGoogle Scholar
  47. 47.
    J. Cumings, A. Zettl, Field emission and current-voltage properties of boron nitride nanotubes. Solid State Commun. 129, 661–664 (2004)CrossRefGoogle Scholar
  48. 48.
    S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Carbon nanotube quantum resistors. Science. 280, 1744–1746 (1998)Google Scholar
  49. 49.
    H.U. Strand, K. Svensson, E. Olsson, Critical aspects of liquid metal immersion methods for characterization of electron transport properties in carbon nanotubes. In preparationGoogle Scholar
  50. 50.
    M.W. Larsson, L.R. Wallenberg, A.I. Persson, L. Samuelson, Probing of individual semiconductor nanowhiskers by TEM-STM. Microsc. Microanal. 10, 41–46 (2004)Google Scholar
  51. 51.
    T. Kuzumaki, H. Yasuhiro, T. Kizuka, In-situ atomistic observation of carbon nanotubes during field emission. AIP Conf. Proc. 281–284 (2001)Google Scholar
  52. 52.
    T. Kuzumaki, H. Sawada, H. Ichinose, Y. Horiike, T. Kizuka, Selective processing of individual carbon nanotubes using dual-nanomanipulator installed in transmission electron microscope. Appl. Phys. Lett. 79, 4580–4582 (2001)CrossRefGoogle Scholar
  53. 53.
    T. Kuzumaki, Y. Horiike, T. Kizuka, T. Kona, C. Oshima, Y. Mitsuda, The dynamic observation of the field emission site of electrons on a carbon nanotube tip. Diamond Relat. Mater. 13, 1907–1913 (2004)CrossRefGoogle Scholar
  54. 54.
    J. Cumings, A. Zettl, M.R. McCartney, J.C. Spence, Electron holography of field-emitting carbon nanotubes. Phys. Rev. Lett. 88, 1–4 (2002)CrossRefGoogle Scholar
  55. 55.
    M. Wang, Q. Chen, L. Peng, Grinding a nanotube. Adv. Mater. 20, 724–728 (2008)Google Scholar
  56. 56.
    R.P. Gao, Z.W. Pan, Z.L. Wang, Work function at the tips of multiwalled carbon nanotubes. Appl. Phys. Lett. 78, 1757–1759 (2001)CrossRefGoogle Scholar
  57. 57.
    X. Bai, E.G. Wang, P. Gao, Z.L. Wang, Measuring the work function at a nanobelt tip and at a nanoparticle surface. Nano Lett. 3, 1147–1150 (2003)CrossRefGoogle Scholar
  58. 58.
    Z. Xu, X.D. Bai, E.G. Wang, Z.L. Wang, Field emission of individual carbon nanotube with in situ tip image and real work function. Appl. Phys. Lett. 87, 163106 (2005)CrossRefGoogle Scholar
  59. 59.
    Z. Xu, X.D. Bai, E.G. Wang, Z.L. Wang, Dynamic in situ field emission of a nanotube at electromechanical resonance. J. Phys.: Condens. Matter. 17, L507–L512 (2005)Google Scholar
  60. 60.
    K. Svensson, H. Olin, E. Olsson, Nanopipettes for metal transport. Phys. Rev. Lett. 93, 14590 (2004)CrossRefGoogle Scholar
  61. 61.
    B.C. Regan, S. Aloni, R.O. Ritchie, U. Dahmen, A. Zettl, Carbon nanotubes as nanoscale mass conveyors. Nature. 428, 924–927 (2004)CrossRefGoogle Scholar
  62. 62.
    L. Dong, X. Tao, L. Zhang, X. Zhang, B.J. Nelson, Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett. 7, 58–63 (2007)CrossRefGoogle Scholar
  63. 63.
    L. Dong, X. Tao, M. Hamdi, L. Zhang, X. Zhang, A. Ferreira, B.J. Nelson, Nanotube fluidic junctions: internanotube attogram mass transport through walls. Nano Lett. 9, 210–214 (2009)CrossRefGoogle Scholar
  64. 64.
    P.M. Costa, D. Golberg, M. Mitome, S. Hampel, A. Leonhardt, B. Buchner, Y. Bando, Stepwise current-driven release of attogram quantities of copper iodide encapsulated in carbon nanotubes. Nano Lett. 8, 3120–3125 (2008)CrossRefGoogle Scholar
  65. 65.
    G.E. Begtrup, W. Gannett, T.D. Yuzvinsky, V.H. Crespi, A. Zettl, Nanoscale reversible mass transport for archival memory. Nano Lett. 9, 1835–1838 (2009)CrossRefGoogle Scholar
  66. 66.
    J.Y. Huang, S. Chen, Z.F. Ren, G. Chen, M.S. Dresselhaus, Real-time observation of tubule formation from amorphous carbon nanowires under high-bias Joule heating. Nano Lett. 6, 1699–1705 (2006)CrossRefGoogle Scholar
  67. 67.
    S. Chen, J.Y. Huang, Z. Wang, K. Kempa, G. Chen, Z.F. Ren, High-bias-induced structure and the corresponding electronic property changes in carbon nanotubes. Appl. Phys. Lett. 87, 263107 (2005)CrossRefGoogle Scholar
  68. 68.
    J. Huang, S. Chen, Z.Q. Wang, K. Kempa, Y.M. Wang, S.H. Jo, G. Chen, M.S. Dresselhaus, Z.F. Ren, Superplastic carbon nanotubes. Nature. 439, 281 (2006)Google Scholar
  69. 69.
    J.Y. Huang, S. Chen, S.H. Jo, Z. Wang, D.X. Han, G. Chen, M.S. Dresselhaus, Z.F. Ren, Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes. Phys. Rev. Lett. 94, 236802 (2005)CrossRefGoogle Scholar
  70. 70.
    T.D. Yuzvinsky, W. Mickelson, S. Aloni, G.E. Begtrup, A. Kis, A. Zettl, Shrinking a carbon nanotube. Nano Lett. 6, 2718–2722 (2006)Google Scholar
  71. 71.
    J.Y. Huang, F. Ding, B.I. Yakobson, P. Lu, L. Qi, J. Li, In situ observation of graphene sublimation and multi-layer edge reconstructions. Proc. Natl Acad. Sci. USA. 106, 10103–10108 (2009)CrossRefGoogle Scholar
  72. 72.
    K. Saito, J. Fujii, T. Kizuka, Electric conduction of amorphous carbon and graphitic nanocontacts. Jpn. J. Appl. Phys. 48, 010218 (2009)CrossRefGoogle Scholar
  73. 73.
    T. Westover, R. Jones, J.Y. Huang, G. Wang, E. Lai, A. Talin, Photoluminescence, thermal transport, and breakdown in joule-heated GaN nanowires. Nano Lett. 9, 257–263 (2009)CrossRefGoogle Scholar
  74. 74.
    Z. Xu, D. Golberg, Y. Bando, Electrical field-assisted thermal decomposition of boron nitride nanotube: experiments and first principle calculations. Chem. Phys. Lett. 480, 110–112 (2009)Google Scholar
  75. 75.
    Z. Xu, D. Golberg, Y. Bando, In situ TEM-STM recorded kinetics of boron nitride nanotube failure under current flow. Nano Lett. 9, 2251–2254 (2009)CrossRefGoogle Scholar
  76. 76.
    M. Hummelgård, R. Zhang, T. Carlberg, D. Vengust, D. Dvorsek, D. Mihailovic, H. Olin, Nanowire transformation and annealing by Joule heating. Nanotechnology. 21, 165704 (2010)CrossRefGoogle Scholar
  77. 77.
    J. Yamashita, H. Hirayama, Y. Ohshima, K. Takayanagi, Growth of a single-wall carbon nanotube in the gap of scanning tunneling microscope. Appl. Phys. Lett. 74, 2450–2452 (1999)CrossRefGoogle Scholar
  78. 78.
    M. Yoshida, Y. Kurui, Y. Oshima, K. Takayanagi, In-Situ observation of the fabrication process of a single shell carbon fullerene nano-contact using transmission electron microscope–scanning tunneling microscope. Jpn. J. Appl. Phys. 46, L67–L69 (2007)CrossRefGoogle Scholar
  79. 79.
    R. Zhang, M. Hummelgård, H. Olin, Carbon nanocages grown by gold templating. Carbon 48, 424–430 (2010)CrossRefGoogle Scholar
  80. 80.
    T. Kizuka, R. Kato, K. Miyazawa, Structure of hollow carbon nanocapsules synthesized by resistive heating. Carbon 47, 138–144 (2009)CrossRefGoogle Scholar
  81. 81.
    C.H. Jin, J.Y. Wang, Q. Chen, L.M. Peng, In situ fabrication and graphitization of amorphous carbon nanowires and their electrical properties. J. Phys. Chem. B. 110, 5423–5428 (2006)CrossRefGoogle Scholar
  82. 82.
    H. Hirayama, Y. Kawamoto, Y. Ohshima, K. Takayanagi, Nanospot welding of carbon nanotubes. Appl. Phys. Lett. 79, 1169 (2001)CrossRefGoogle Scholar
  83. 83.
    C. Jin, K. Suenaga, S. Iijima, Plumbing carbon nanotubes. Nat. Nanotechnol. 3, 17–21 (2008)Google Scholar
  84. 84.
    M. Wang, L. Peng, J. Wang, Q. Chen, Shaping carbon nanotubes and the effects on their electrical and mechanical properties. Adv. Funct. Mater. 16, 1462–1468 (2006)CrossRefGoogle Scholar
  85. 85.
    D.N. Madsen, K. Mølhave, R. Mateiu, A.M. Rasmussen, M. Brorson, C.J. Jacobsen, P. Bøggild, Soldering of nanotubes onto microelectrodes. Nano Lett. 3, 47–49 (2003)CrossRefGoogle Scholar
  86. 86.
    L. de Knoop, K. Svensson, H. Petterson, E. Olsson, Extraction and local probing of individual carbon nanotubes. AIP Conference Proceedings, Aip, 2005, pp. 118–123Google Scholar
  87. 87.
    P. Poncharal, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science. 283, 1513–1516 (1999)CrossRefGoogle Scholar
  88. 88.
    R.P. Gao, Z.L. Wang, Z. Bai, W.A. de Heer, L. Dai, M. Gao, Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays. Phys. Rev. Lett. 85, 622–625 (2000)CrossRefGoogle Scholar
  89. 89.
    M.M. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature. 381, 678–680 (1996)CrossRefGoogle Scholar
  90. 90.
    J. Cumings, A. Zettl, Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science. 289, 602–604 (2000)CrossRefGoogle Scholar
  91. 91.
    T. Kizuka, Atomistic visualization of deformation in gold. Phys. Rev. B. 57, 11158–11163 (1998)CrossRefGoogle Scholar
  92. 92.
    K.J. Ziegler, D. Lyons, J.D. Holmes, D. Erts, B. Polyakov, H. Olin, K. Svensson, E. Olsson, Bistable nanoelectromechanical devices. Appl. Phys. Lett. 84, 4074 (2004)Google Scholar
  93. 93.
    J. Andzane, N. Petkov, A.I. Livshits, J.J. Boland, J.D. Holmes, D. Erts, Two-terminal nanoelectromechanical devices based on germanium nanowires. Nano Lett. 9, 1824–1829 (2009)CrossRefGoogle Scholar
  94. 94.
    J. Andzane, J. Prikulis, D. Dvorsek, D. Mihailovic, D. Erts, Two-terminal nanoelectromechanical bistable switches based on molybdenum-sulfur-iodine molecular wire bundles. Nanotechnology. 21, 125706 (2010)CrossRefGoogle Scholar
  95. 95.
    G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986)CrossRefGoogle Scholar
  96. 96.
    A.V. Ermakop, E.L. Garfunkel, A novel AFM/STM/SEM. Rev. Sci. Instrum. 65, 2653–2654 (1994)Google Scholar
  97. 97.
    U. Stahl, C.W. Yuan, A.L. de Lozanne, M. Tortonese, Atomic force microscope using piezoresistive cantilevers and combined with a scanning electron microscope. Appl. Phys. Lett. 65, 2878 (1994)CrossRefGoogle Scholar
  98. 98.
    K. Jensen, W. Mickelson, A. Kis, A. Zettl, Buckling and kinking force measurements on individual multiwalled carbon nanotubes. Phys. Rev. B. 76, 1–5 (2007)Google Scholar
  99. 99.
    Y. Lu, J.Y. Huang, C. Wang, S. Sun, J. Lou, Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 1–7 (2010)Google Scholar
  100. 100.
    D. Erts, A. Lohmus, R. Lohmus, H. Olin, A.V. Pokropivny, L. Ryen, K. Svensson, Force interactions and adhesion of gold contacts using a combined atomic force microscope and transmission electron microscope. Appl. Surf. Sci. 188, 460–466 (2002)CrossRefGoogle Scholar
  101. 101.
    C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang, Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942 (1987)CrossRefGoogle Scholar
  102. 102.
    Y. Martin, C.C. Williams, H.K. Wickramasinghe, Atomic force microscope-force mapping and profiling on a sub 100-Å scale. J. Appl. Phys. 61, 4723 (1987)CrossRefGoogle Scholar
  103. 103.
    G. Neubauer, S.R. Cohen, G.M. McClelland, D. Horne, C.M. Mate, Force microscopy with a bidirectional capacitance sensor. Rev. Sci. Instrum. 61, 2296 (1990)CrossRefGoogle Scholar
  104. 104.
    T. Go¨ddenhenrich, H. Lemke, U. Hartmann, C. Heiden, Force microscope with capacitive displacement detection. J. Vac. Sci. Technol. A: Vac. 8, 383 (1990)Google Scholar
  105. 105.
    T. Itoh, T. Suga, Piezoelectric force sensor for scanning force microscopy. Engineering. 43, 305–310 (1994)Google Scholar
  106. 106.
    M. Tortonese, R.C. Barrett, C.F. Quate, Atomic resolution with an atomic force microscope using piezoresistive detection. Appl. Phys. Lett. 62, 834 (1993)CrossRefGoogle Scholar
  107. 107.
    A. Nafari, A. Danilov, H. Rödjegård, P. Enoksson, H. Olin, A micromachined nanoindentation force sensor. Sens. Actuat. A: Phys. 123–124, 44–49 (2005)Google Scholar
  108. 108.
    H.D. Espinosa, Y. Zhu, B. Peng, A MEMS device for in situ TEM/AFM/SEM/STM testing of carbon nanotubes and nanowires. 2002 SEM annual conference, Milwaukee, 2002, pp. 1–5Google Scholar
  109. 109.
    S.A. Asif, K.J. Wahl, R.J. Colton, Nanoindentation and contact stiffness measurement using force modulation with a capacitive load-displacement transducer. Rev. Sci. Instrum. 70, 2408 (1999)CrossRefGoogle Scholar
  110. 110.
    A. Nafari, D. Karlen, C. Rusu, K. Svensson, H. Olin, P. Enoksson, MEMS sensor for in situ TEM atomic force microscopy. J. Microelectromech. Syst. 17, 328–333 (2008)CrossRefGoogle Scholar
  111. 111.
    J. Thaysen, A. Boisen, O. Hansen, S. Bouwstra, Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement. Sens. Actuat. A: Phys. 83, 47–53 (2000)CrossRefGoogle Scholar
  112. 112.
    D. Golberg, P.M. Costa, O. Lourie, M. Mitome, X. Bai, K. Kurashima, C. Zhi, C. Tang, Y. Bando, Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Lett. 7, 2146–2151 (2007)CrossRefGoogle Scholar
  113. 113.
    A. Asthana, K. Momeni, A. Prasad, Y.K. Yap, R.S. Yassar, In situ probing of electromechanical properties of an individual ZnO nanobelt. Appl. Phys. Lett. 95, 172106 (2009)CrossRefGoogle Scholar
  114. 114.
    P.M. Costa, D. Golberg, G. Shen, M. Mitome, Y. Bando, ZnO low-dimensional structures: electrical properties measured inside a transmission electron microscope. J. Mater. Sci. 43, 1460–1470 (2007)CrossRefGoogle Scholar
  115. 115.
    T. Shokuhfar, G.K. Arumugam, P.A. Heiden, R.S. Yassar, C. Friedrich, Direct compressive measurements of individual titanium dioxide nanotubes. ACS Nano. 3, 3098–3102 (2009)CrossRefGoogle Scholar
  116. 116.
    T. Kuzumaki, Y. Mitsuda, Nanoscale mechanics of carbon nanotube evaluated by nanoprobe manipulation in transmission electron microscope. Jpn. J. Appl. Phys. 45, 364–368 (2006)CrossRefGoogle Scholar
  117. 117.
    X. Bai, D. Golberg, Y. Bando, C. Zhi, C. Tang, M. Mitome, K. Kurashima, Deformation-driven electrical transport of individual boron nitride nanotubes. Nano Lett. 7, 632–637 (2007)CrossRefGoogle Scholar
  118. 118.
    T. Kizuka, Direct atomistic observation of deformation in multiwalled carbon nanotubes. Phys. Rev. B. 59, 4646–4649 (1999)CrossRefGoogle Scholar
  119. 119.
    K. Asaka, R. Kato, K. Miyazawa, T. Kizuka, Deformation of multiwalled nanometer-sized carbon capsules. Appl. Phys. Lett. 89, 191914 (2006)CrossRefGoogle Scholar
  120. 120.
    H. Ghassemi, Y.K. Yap, R.S. Yassar, In-situ nanomechanical testing of one dimensional material. NSTI-Nanotech 2009, Houston (2009).Google Scholar
  121. 121.
    K. Asaka, K. Miyazawa, T. Kizuka, The toughness of multi-wall carbon nanocapsules. Nanotechnology. 20, 385705 (2009)CrossRefGoogle Scholar
  122. 122.
    R. Kato, K. Asaka, K. Miyazawa, T. Kizuka, In situ high-resolution transmission electron microscopy of elastic deformation and fracture of nanometer-sized fullerene C 60 whiskers. Jpn. J. Appl. Phys. 45, 8024–8026 (2006)CrossRefGoogle Scholar
  123. 123.
    K. Saito, K. Miyazawa, T. Kizuka, Bending process and Young’s modulus of fullerene C 60 nanowhiskers. Jpn. J. Appl. Phys. 48, 010217 (2009)CrossRefGoogle Scholar
  124. 124.
    M.S. Wang, Y. Bando, J.A. Rodriguez-Manzo, F. Banhart, D. Golberg, Cobalt nanoparticle-assisted engineering of multiwall carbon nanotubes. ACS Nano. 3, 2632–2638 (2009)CrossRefGoogle Scholar
  125. 125.
    P.M. Costa, U.K. Gautam, M.S. Wang, Y. Bando, D. Golberg, Effect of crystalline filling on the mechanical response of carbon nanotubes. Carbon. 47, 541–544 (2009)CrossRefGoogle Scholar
  126. 126.
    S. Blom, H. Olin, J. Costa-Kramer, N. Garcia, M. Jonson, P. Serena, R. Shekhter, Free-electron model for mesoscopic force fluctuations in nanowires. Phys. Rev. B. 57, 8830–8833 (1998)CrossRefGoogle Scholar
  127. 127.
    N. Agraït, G. Rubio, S. Vieira, Plastic deformation of nanometer-scale gold connective necks. Phys. Rev. Lett. 74, 3995–3998 (1995)CrossRefGoogle Scholar
  128. 128.
    T. Kizuka, Atomic configuration and mechanical and electrical properties of stable gold wires of single-atom width. Phys. Rev. B. 77 (2008)Google Scholar
  129. 129.
    T. Matsuda, T. Kizuka, Palladium wires of single atom width as mechanically controlled switching devices. Jpn. J. Appl. Phys. 45, L1337–L1339 (2006)CrossRefGoogle Scholar
  130. 130.
    M. Ryu, T. Kizuka, Structure, conductance and strength of iridium wires of single atom width. Jpn. J. Appl. Phys. 45, 8952–8956 (2006)CrossRefGoogle Scholar
  131. 131.
    T. Matsuda, T. Kizuka, Structure and tensile force of nanometer- and atomic-sized gold contacts during conductance feedback control. Jpn. J. Appl. Phys. 48, 125007 (2009)CrossRefGoogle Scholar
  132. 132.
    S. Fujisawa, T. Kikkawa, T. Kizuka, Direct observation of electromigration and induced stress in Cu nanowire. Jpn. J. Appl. Phys. 42, L1433–L1435 (2003)CrossRefGoogle Scholar
  133. 133.
    T. Kizuka, H. Aoki, The dynamics of electromigration in copper nanocontacts. Appl. Phys. Express. 2, 075003 (2009)CrossRefGoogle Scholar
  134. 134.
    T. Matsuda, T. Kizuka, Slip sequences during tensile deformation of palladium nanocontacts. Jpn. J. Appl. Phys. 48, 115003 (2009)CrossRefGoogle Scholar
  135. 135.
    T. Kizuka, Y. Takatani, K. Asaka, R. Yoshizaki, Measurements of the atomistic mechanics of single crystalline silicon wires of nanometer width. Phys. Rev. B. 72, 1–6 (2005)CrossRefGoogle Scholar
  136. 136.
    T. Kizuka, Y. Takatani, Growth of silicon nanowires by nanometer-sized tip manipulation. Jpn. J. Appl. Phys. 46, 5706–5710 (2007)CrossRefGoogle Scholar
  137. 137.
    B.N. Persson, Sliding friction. Surf. Sci. Rep. 33, 83–119 (1999)CrossRefGoogle Scholar
  138. 138.
    E. Gnecco, R. Bennewitz, T. Gyalog, E. Meyer, Friction experiments on the nanometre scale. J. Phys.: Condens. Matter. 13, R619–R642 (2001)Google Scholar
  139. 139.
    B. Bhushan, Nanotribology and Nanomechanics (Springer, Heidelberg, 2008)Google Scholar
  140. 140.
    S. Fujisawa, T. Kizuka, Lateral displacement of an AFM tip observed by in-situ TEM/AFM combined microscopy: the effect of the friction in AFM. Tribol. Lett. 15, 163–168 (2003)CrossRefGoogle Scholar
  141. 141.
    “Preparation of sample for in-situ tem-spm operation; http://www.youtube.com/watch?v=9k9KO5WEyog.”
  142. 142.
    P.M. Costa, D. Golberg, M. Mitome, Y. Bando, Nitrogen-doped carbon nanotube structure tailoring and time-resolved transport measurements in a transmission electron microscope. Appl. Phys. Lett. 91, 223108 (2007)CrossRefGoogle Scholar
  143. 143.
    L. de Knoop, Investigation of iron filled multiwalled carbon nanotubes, Chalmers University of Technology (Dept. of Applied Physics), 2005Google Scholar
  144. 144.
    M.M. Yazdanpanah, S.A. Harfenist, A. Safir, R.W. Cohn, Selective self-assembly at room temperature of individual freestanding Ag2Ga alloy nanoneedles. J. Appl. Phys. 98 (2005)Google Scholar
  145. 145.
    J. Deneen, W.M. Mook, A. Minor, W.W. Gerberich, C.B. Carter, In situ deformation of silicon nanospheres. J. Mater. Sci. 41, 4477–4483 (2006)CrossRefGoogle Scholar
  146. 146.
    T. Kizuka, R. Kato, K. Miyazawa, Surface breakdown dynamics of carbon nanocapsules. Nanotechnology. 20, 105205 (2009)CrossRefGoogle Scholar
  147. 147.
    R. Zhang, M. Hummelgård, H. Olin, Simple and efficient gold nanoparticles deposition on carbon nanotubes with controllable particle sizes. Mater. Sci. Eng.: B. 158, 48–52 (2009)Google Scholar
  148. 148.
    R. Zhang, M. Hummelgård, H. Olin, Simple synthesis of clay-gold nanocomposites with tunable color. Langmuir. 26, 5823–5828 (2010)CrossRefGoogle Scholar
  149. 149.
    K.K. Datta, M. Eswaramoorthy, C.N. Rao, Water-solubilized aminoclay-metal nanoparticle composites and their novel properties. J. Mater. Chem. 17, 613 (2007)CrossRefGoogle Scholar
  150. 150.
    O.L. Guise, J.W. Ahner, M. Jung, P.C. Goughnour, J.T. Yates, Reproducible electrochemical etching of tungsten probe tips. Nano Lett. 2, 191–193 (2002)CrossRefGoogle Scholar
  151. 151.
    I. Ekvall, E. Wahlstrom, D. Claesson, H. Olin, E. Olsson, Preparation and characterization of electrochemically etched W tips for STM. Meas. Sci. Technol. 10, 11–18 (1999)CrossRefGoogle Scholar
  152. 152.
    P.M. Costa, X. Fang, S. Wang, Y. He, Y. Bando, M. Mitome, J. Zou, H. Huang, D. Golberg, Two-probe electrical measurements in transmission electron microscopes–behavioral control of tungsten microwires. Microsc. Res. Tech. 72, 93–100 (2009)CrossRefGoogle Scholar
  153. 153.
    J.G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793 (1963)CrossRefGoogle Scholar
  154. 154.
    X.L. Wei, Y. Liu, Q. Chen, L.M. Peng, Controlling electron-beam-induced carbon deposition on carbon nanotubes by Joule heating. Nanotechnology. 19, 355304 (2008)CrossRefGoogle Scholar
  155. 155.
    A.N. Chiaramonti, L.J. Thompson, W.F. Egelhoff, B.C. Kabius, A.K. Petford-Long, In situ TEM studies of local transport and structure in nanoscale multilayer films. Ultramicroscopy. 108, 1529–1535 (2008)CrossRefGoogle Scholar
  156. 156.
    J. Börjesson, The Role of Interfacial Microstructure of Perovskite Thin Films: A High Resolution and In Situ Study (Chalmers University of Technology, Sweden, 2009)Google Scholar
  157. 157.
    A. Nafari, P. Enoksson, H. Olin, Si-wedge for easy TEM sample preparation for in situ probing. Eurosensors, Barcelona, 2005Google Scholar
  158. 158.
    D.B. Williams, B.C. Carter, Transmission Electron Microscopy (Plenum, New York, 1996)Google Scholar
  159. 159.
    C. Jin, H. Lan, L. Peng, K. Suenaga, S. Iijima, Deriving carbon atomic chains from graphene. Phys. Rev. Lett. 102, 1–4 (2009)Google Scholar
  160. 160.
    D. Ugarte, Curling and closure of graphitic networks under electron-beam irradiation. Nature 359, 707–709 (1992)CrossRefGoogle Scholar
  161. 161.
    F. Banhart, Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181–1221 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexandra Nafari
    • 1
  • Johan Angenete
    • 1
  • Krister Svensson
    • 2
  • Anke Sanz-Velasco
    • 3
  • Håkan Olin
    • 4
  1. 1.Nanofactory InstrumentsGothenburgSweden
  2. 2.Karlstad UniversityKarlstadSweden
  3. 3.Chalmers University of TechnologyGothenburgSweden
  4. 4.Mid Sweden UniversitySundsvallSweden

Personalised recommendations