Time-Resolved Tapping-Mode Atomic Force Microscopy

Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Atomic force microscopy has unprecedented potential for quantitative mapping of material-specific surface properties on the nanoscale. Unfortunately, methods developed for local stiffness measurements suffer from low operational speeds and they require large forces to be applied to the surface, limiting resolution and precluding measurements on soft materials such as polymers and biological samples. On the other hand, tapping-mode AFM, which is well suited to soft materials due to its gentle interaction with the surface, cannot be used to recover information on the tip–sample interaction (and hence, on the material properties) due to limited mechanical bandwidth offered by the resonant AFM probe. In this chapter, a technique, called Time-resolved Tapping-mode Atomic Force Microscopy, designed for rapid quantitative material characterization on the nanoscale is described. The technique is based on time-resolved measurement of tip–sample interaction forces during tapping-mode AFM imaging by a specially designed micromachined AFM probe. The probe has an integrated high-bandwidth interferometric force sensor that is used to resolve tip–sample interaction forces with high sensitivity and temporal resolution. In the first part of the chapter, the theory, design, and fabrication of the probes are described in detail. Then quantitative force measurements with microsecond time resolution in tapping-mode imaging are presented. Finally, higher harmonic images based on the interaction force measurements are presented for various samples, demonstrating the range of applications of the technique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986)CrossRefGoogle Scholar
  2. 2.
    F.J. Giessibl, S. Hembacher, H. Bielefeldt, J. Mannhart, Subatomic features on the silicon (111)-(7 ×7) surface observed by atomic force microscopy. Science 289, 422 (2000)CrossRefGoogle Scholar
  3. 3.
    N.A. Burnham, R. J. Colton, Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope. J. Vac. Sci. Technol. A 7, 2906 (1989)CrossRefGoogle Scholar
  4. 4.
    M. Radmacher, J.P. Cleveland, M. Fritz, H.G. Hansma, P.K. Hansma, Mapping interaction forces with the atomic force microscope. Biophys. J. 66, 2159 (1994)CrossRefGoogle Scholar
  5. 5.
    K. Yamanaka, H. Ogiso, O. Kolosov, Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 64, 178 (1994)CrossRefGoogle Scholar
  6. 6.
    O.V. Kolosov, M.R. Castell, C.D. Marsh, G.A.D. Briggs, T.I. Kamins, R.S. Williams, Imaging the elastic nanostructure of Ge Islands by ultrasonic force microscopy. Phys. Rev. Lett. 81, 1046 (1998)CrossRefGoogle Scholar
  7. 7.
    A. Rosa-Zeiser, E. Weilandt, S. Hild, O. Marti, The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation. Meas. Sci. Technol. 8, 1333 (1997)CrossRefGoogle Scholar
  8. 8.
    H. Krotil, T. Stifter, H. Waschipky, K. Weishaupt, S. Hild, O. Marti, Pulsed force mode: a new method for the investigation of surface properties. Surf. Interface Anal. 27, 336 (1999)CrossRefGoogle Scholar
  9. 9.
    P. Maivald, H.J. Butt, S.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, P.K. Hansma, Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology 2, 103 (1991)CrossRefGoogle Scholar
  10. 10.
    M. Radmacher, R.W. Tillmann, H.E. Gaub, Imaging viscoelasticity by force modulation with the atomic force microscope. Biophys. J. 64, 735 (1993)CrossRefGoogle Scholar
  11. 11.
    Q. Zhong, D. Inniss, K. Kjoller, V.B. Elings, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. 290, 688 (1993)CrossRefGoogle Scholar
  12. 12.
    C. Moller, M. Allen, V. Elings, A. Engel, D.J. Muller, Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces. Biophys. J. 77(2), 1150–1158 (1999)CrossRefGoogle Scholar
  13. 13.
    D.A. Chernoff, Proceedings of Microscopy and Microanalysis 1995 (Jones and Begell, New York, 1995)Google Scholar
  14. 14.
    S.N. Magonov, V. Elings, V. S. Papkov, AFM study of thermotropic structural transitions in poly(diethylsiloxane). Polymer 38, 297 (1997)CrossRefGoogle Scholar
  15. 15.
    M. Stark, R.W. Stark, W.M. Heckl, and R. Guckenberger, Inverting dynamic force microscopy: From signals to time-resolved interaction forces. PNAS 99, 8473 (2002)CrossRefGoogle Scholar
  16. 16.
    J. Legleiter, M. Park, B. Cusick, T. Kowalewski, Scanning probe acceleration microscopy (SPAM) in fluids: Mapping mechanical properties of surfaces at the nanoscale. PNAS 103, 4813 2006)CrossRefGoogle Scholar
  17. 17.
    O. Sahin, G. Yaralioglu, R. Grow, S.F. Zappe, A. Atalar, C.F. Quate, O. Solgaard, High resolution imaging of elastic properties using harmonic cantilevers. Sens. Actuators A 114, 183 (2004)CrossRefGoogle Scholar
  18. 18.
    S. Sadewasser, G. Villanueva, J.A. Plaza, Special cantilever geometry for the access of higher oscillation modes in atomic force microscopy. Appl. Phys. Lett. 89, 033106 (2006)CrossRefGoogle Scholar
  19. 19.
    R. Proksch, Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy. Appl. Phys. Lett. 89, 113121 (2006)CrossRefGoogle Scholar
  20. 20.
    A.G. Onaran, M. Balantekin, W. Lee, W.L. Hughes, B.A. Buchine, R.O. Guldiken, Z. Parlak, C.F. Quate, F.L. Degertekin, A new atomic force microscope probe with force sensing integrated readout and active tip. Rev. Sci. Instrum. 77, 023501 (2006)CrossRefGoogle Scholar
  21. 21.
    M. Balantekin, A.G. Onaran, F.L. Degertekin, Quantitative mechanical characterization of materials at the nanoscale through direct measurement of time-resolved tip-sample interaction forces. Nanotechnology 19, 085704 (2008)CrossRefGoogle Scholar
  22. 22.
    O. Sahin, S. Magonov, C. Su, C.F. Quate, O. Solgaard, An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat. Nanotechnol. 2, 507 (2007)CrossRefGoogle Scholar
  23. 23.
    O. Sahin, N. Erina, High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy. Nanotechnology 19, 445717 (2008)CrossRefGoogle Scholar
  24. 24.
    A.F. Sarioglu, O. Solgaard, Cantilevers with integrated sensor for time-resolved force measurement in tapping-mode atomic force microscopy. Appl. Phys. Lett. 93, 023114 (2008)CrossRefGoogle Scholar
  25. 25.
    A.F. Sarioglu, M. Liu, O. Solgaard, Interferometric force sensing AFM probes for nanomechanical mapping of material properties, in Proceedings of the 15th International Conference on Solid-State Sensors, Actuators and Microsystems – IEEE Transducers, Denver, CO, USA, 2009, pp. 1634–1637Google Scholar
  26. 26.
    R. Garcia, A. San Paulo, Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Phys. Rev. B 60, 4961 (1999)CrossRefGoogle Scholar
  27. 27.
    J. Israelachvili, Intermolecular and Surface Forces (Academic, London, 2003)Google Scholar
  28. 28.
    B.V. Derjaguin, V.M. Muller, Y.P. Toporov, Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314 (1975)CrossRefGoogle Scholar
  29. 29.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon, New York, 1986)Google Scholar
  30. 30.
    J. Tamayo, R. Garcia, Deformation, contact time, and phase contrast in tapping mode scanning force microscopy. Langmuir 12, 4430 (1996)CrossRefGoogle Scholar
  31. 31.
    A.S. Paulo, R. Garcia, Unifying theory of tapping mode atomic force microscopy. Phys. Rev. B 66, 041406 (2002)CrossRefGoogle Scholar
  32. 32.
    A.S. Paulo, R. Garcia, Tip-surface forces, amplitude, and energy dissipation in amplitude modulation (tapping mode) force microscopy. Phys. Rev. B. 64, 193411 (2001)CrossRefGoogle Scholar
  33. 33.
    J. Chen, R.K. Workman, D. Sarid, R. Hoper, Numerical simulations of a scanning force microscope with a large-amplitude vibrating cantilever. Nanotechnology 5, 199 (1994)CrossRefGoogle Scholar
  34. 34.
    S.I. Lee, S.W. Howell, A. Raman, R. Reifenberger, Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment. Phys. Rev. B 66, 115409 (2002)CrossRefGoogle Scholar
  35. 35.
    T.R. Rodriguez, R. Garcia, Tip motion in amplitude modulation (tapping-mode) atomic-force microscopy: Comparison between continuous and point-mass models. Appl. Phys. Lett. 80, 1646 (2002)CrossRefGoogle Scholar
  36. 36.
    O. Sahin, A. Atalar, Analysis of tip-sample interaction in tapping-mode atomic force microscope using an electrical circuit simulator. Appl. Phys. Lett. 78, 2973 (2001)CrossRefGoogle Scholar
  37. 37.
    M. Balantekin, A. Atalar, Power dissipation analysis in tapping-mode atomic force microscopy. Phys. Rev. B 67, 193404 (2003)CrossRefGoogle Scholar
  38. 38.
    O. Solgaard, F.S.A. Sandejas, D.M. Bloom, Deformable grating optical modulator. Opt. Lett. 17, 688 (1992)Google Scholar
  39. 39.
    S.R. Manalis, S.C. Minne, A. Atalar, C.F. Quate, Interdigital cantilevers for atomic force microscopy. Appl. Phys. Lett. 69, 3944 (1996)CrossRefGoogle Scholar
  40. 40.
    G.G. Yaralioglu, A. Atalar, S.R. Manalis, C.F. Quate, Analysis and design of an interdigital cantilever as a displacement sensor. J. Appl. Phys. 83, 7405 (1998)CrossRefGoogle Scholar
  41. 41.
    R.J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972)Google Scholar
  42. 42.
    O. Solgaard, Photonic Microsystems, Chapter 10.5 (Springer, Heidelberg, 2009)Google Scholar
  43. 43.
    O. Sahin, A. Atalar, C.F. Quate, O. Solgaard, Resonant harmonic response in tapping-mode atomic force microscopy. Phys. Rev. B. 69, 165416 (2004)CrossRefGoogle Scholar
  44. 44.
    B.E. Deal, A.S. Grove, General Relationship for the Thermal Oxidation of Silicon. J. Appl. Phys. 36, 3770 (1965)CrossRefGoogle Scholar
  45. 45.
    T.S. Ravi, R.B. Marcus, D. Liu, Oxidation sharpening of silicon tips. J. Vac. Sci. Technol. B 9, 2733 (1991)CrossRefGoogle Scholar
  46. 46.
    G. Meyer, N.M. Amer, Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53, 1045 (1988)CrossRefGoogle Scholar
  47. 47.
    S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P.K. Hansma, M. Longmire, J. Gurley, An atomic-resolution atomic-force microscope implemented using an optical lever. J. Appl. Phys. 65, 164 (1989)CrossRefGoogle Scholar
  48. 48.
    Y. Martin, C.C. Williams, H.K. Wickramasinghe, Atomic force microscope-force mapping and profiling on a sub 100-Å scale. J. Appl. Phys. 61, 4723 (1987)CrossRefGoogle Scholar
  49. 49.
    D. Rugar, H.J. Mamin, P. Guethner, Improved fiber-optic interferometer for atomic force microscopy. Appl. Phys. Lett. 55, 2588 (1989)CrossRefGoogle Scholar
  50. 50.
    M. Tortonese, R.C. Barrett, C.F. Quate, Atomic resolution with an atomic force microscope using piezoresistive detection. Appl. Phys. Lett. 62, 834 (1993)CrossRefGoogle Scholar
  51. 51.
    J.L. Hutter, J. Bechhoefer, Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868 (1993)CrossRefGoogle Scholar
  52. 52.
    B. Ohler, Cantilever spring constant calibration using laser Doppler vibrometry. Rev. Sci. Instrum. 78, 063701 (2007)CrossRefGoogle Scholar
  53. 53.
    R.W. Stark, W.M. Heckl, Higher harmonics imaging in tapping-mode atomic-force microscopy. Rev. Sci. Instrum. 74, 5111 (2003)CrossRefGoogle Scholar
  54. 54.
    J.P. Cleveland, B. Anczykowski, A.E. Schmid, V.B. Elings, Energy dissipation in tapping-mode atomic force microscopy. Appl. Phys. Lett. 72, 2613 (1998)CrossRefGoogle Scholar
  55. 55.
    G.E. Poirier, E.D. Pylant, The self-assembly mechanism of alkanethiols on Au(111). Science 272, 1145 (1996)CrossRefGoogle Scholar
  56. 56.
    M. Liu, N.A. Amro, G. Liu, Nanografting for surface physical chemistry. Annu. Rev. Phys. Chem. 59, 367 (2008)CrossRefGoogle Scholar
  57. 57.
    S.N. Magonov, D.H. Reneker, Characterization of polymer surfaces with atomic force microscopy. Annu. Rev. Mater. Sci. 27, 175 (1997)CrossRefGoogle Scholar
  58. 58.
    L. Leibler, Theory of microphase separation in block copolymers. Macromolecules 13, 1602 (1980)CrossRefGoogle Scholar
  59. 59.
    S.N. Magonov, J. Cleveland, V. Elings, D. Denley, M.-H. Whangbo, Tapping-mode atomic force microscopy study of the near-surface composition of a styrene-butadiene-styrene triblock copolymer film. Surf. Sci. 389, 201 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Electrical Engineering, E.L. Ginzton LaboratoryStanford UniversityStanfordUSA

Personalised recommendations