Two Approaches to Iterated Belief Contraction

  • Raghav Ramachandran
  • Abhaya C. Nayak
  • Mehmet A. Orgun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5914)

Abstract

Iterated Belief Contraction is a relatively less explored area in belief change and intuition for it is often driven by work in the area of iterated belief revision. For many of the iterable belief contraction functions defined in the literature, very little is known about their properties. In this paper we recall two iterable contraction functions, Natural contraction and Priority contraction, defined by Nayak and colleagues. Here we characterize both these contraction functions via some simple properties of iterated contraction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic 50, 510–530 (1985)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Areces, C., Becher, V.: Iterable agm functions. In: Williams, M.-A., Rott, H. (eds.) Frontiers in Belief Revision, pp. 261–277. Kluwer, Dordrecht (2001)Google Scholar
  3. 3.
    Boutilier, C.: Revision sequences and nested conditionals. In: International Joint Conferences on Artificial Intelligence, pp. 519–525 (1993)Google Scholar
  4. 4.
    Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artifical Intelligence 89, 1–29 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Friedman, N., Halpern, J.Y.: Belief revision: A critique. In: Knowledge Representation and Reasoning, pp. 421–431 (1996)Google Scholar
  6. 6.
    Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States. Bradford Books/ MIT Press, Cambridge (1988)Google Scholar
  7. 7.
    Grove, A.: Two modellings for theory change. Journal of Philosophical Logic 17, 157–170 (1988)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hansson, S.O.: Belief Base Dynamics. Uppsala University, PhD thesis (1991)Google Scholar
  9. 9.
    Nayak, A.C., Goebel, R., Orgun, M.A.: Iterated belief contraction from first principles. In: International Joint Conferences on Artificial Intelligence, pp. 2568–2573 (2007)Google Scholar
  10. 10.
    Nayak, A.C., Goebel, R., Orgun, M.A., Pham, T.: Iterated belief change and the levi identity. In: Delgrande, J.P., Lang, J., Rott, H., Tallon, J.-M. (eds.) Belief Change in Rational Agents. Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, vol. 05321 (2005)Google Scholar
  11. 11.
    Nayak, A.C., Pagnucco, M., Peppas, P.: Dynamic belief revision operators. Artif. Intell. 146(2), 193–228 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Rott, H.: Change, Choice and Inference: A study of belief revision and nonmonotonic reasoning. Oxford Science Publications, Clarendon Press (2001)Google Scholar
  13. 13.
    Rott, H.: Shifting priorities: Simple representations for twenty-seven iterated theory change operators. In: Lagerlund, H., Lindstrom, S., Sliwinski, R. (eds.) Modality Matters: Twenty-five Essays in Honour of Krister Segerberg, pp. 359–384. Uppsala University Press (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Raghav Ramachandran
    • 1
  • Abhaya C. Nayak
    • 1
  • Mehmet A. Orgun
    • 1
  1. 1.Department of ComputingMacquarie UniversityAustralia

Personalised recommendations