Advertisement

Biohybrid and Peptide-Based Polymer Vesicles

  • Annabelle Bertin
  • Florian Hermes
  • Helmut SchlaadEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 224)

Abstract

This review covers the major processes and mechanisms involved in the production of biohybrid or peptide-based polymer vesicles by self-assembly. The formation of vesicles conventionally occurs based on geometric packing issues, and becomes predominant when the membrane-forming segment is stiffened due to hydrogen bonding and secondary structure interactions or supramolecular complexation. The vesicles are used for applications in life science, for the purpose of drug/gene delivery, cell surface recognition, and as bioreactors, and for the production of composite materials.

Keywords

Aggregation Biohybrid Biomembrane Block copolymer Colloid Glycopolymer Polypeptide Secondary structure Self-assembly Vesicle 

List of Abbreviations

Ala, A

Alanine

Arg, R

Arginine

Asp, D

Aspartic acid

AspA

Aspartamide

Bzl, B

Benzyl

CD

Circular dichroism

Cys, C

Cysteine

DFM

Dark-field microscopy

DIC

Differential interference contrast

DLS

Dynamic light scattering

DMF

N,N-Dimethylformamide

DNA

Desoxyribonucleic acid

EYPG

Egg yolk phosphatidyl glycerol

FM

Fluorescence microscopy

FTIC

Fluoresceine isothiocyanate

Glc

Glucose

Gln, Q

Glutamine

Glu, E

Glutamic acid

IR

Infrared

Lac

Lactose

LCST

Lower critical solution temperature

Leu, L

Leucine

LSCM

Laser scanning confocal microscopy

Lys, K

Lysine

Mb

Myoglobin

Me, M

Methyl

MRI

Magnetic resonance imaging

NMR

Nuclear magnetic resonance

OM

Optical microscopy

PB

Polybutadiene

PDEGMA

Poly(diethyleneglycol methacrylate)

PEG, PEO

Poly(ethylene glycol), poly(ethylene oxide)

PELLys

Poly(N ε-[2-(2-(methoxyethoxy)ethoxy)]acetyl-l-lysine)

PGEA

Poly(2-(β-d-glucopyranosyloxy)ethyl acrylate)

PGEMA

Poly(2-glucosyloxyethyl methacrylate)

Phe, F

Phenylalanine

PHPMA

Poly(N-(2-hydroxypropyl)methacrylamide)

PIAA

Polyisocyanodipeptide

PIC

Polyion complex

PMMA

Poly(methyl methacrylate)

PNIPAM

Poly(N-isopropylacrylamide)

PS

Polystyrene

Rg

Radius of gyration

Rh

Hydrodynamic radius

SANS

Small-angle neutron scattering

SAXS

Small-angle X-ray scattering

SEM

Scanning electron microscopy

SFM

Scanning force microscopy

SLS

Static light scattering

TEM

Transmission electron microscopy

THF

Tetrahydrofuran

Z

Benzyloxycarbonyl

Notes

Acknowledgement

H.S. thanks all former and present coworkers working in the field of biohybrid polymers and Erich C. (beerandfunandloudmusic). Financial support was given by the Max Planck Society and the German Research Foundation (within the Eurocores Programme BIOSONS).

References

  1. 1.
    Discher DE, Eisenberg A (2002) Science 297:967CrossRefGoogle Scholar
  2. 2.
    Jain S, Bates FS (2003) Science 300:460CrossRefGoogle Scholar
  3. 3.
    Antonietti M, Förster S (2003) Adv Mater 15:1323CrossRefGoogle Scholar
  4. 4.
    Ringsdorf H, Schlarb B, Venzmer J (1988) Angew Chem Int Ed Engl 27:113CrossRefGoogle Scholar
  5. 5.
    Schlaad H, Antonietti M (2003) Eur Phys J E 10:17CrossRefGoogle Scholar
  6. 6.
    Kita-Tokarczyk K, Grumelard J, Haefele T, Meier W (2005) Polymer 46:3540CrossRefGoogle Scholar
  7. 7.
    Deming TJ (2007) Prog Polym Sci 32:858CrossRefGoogle Scholar
  8. 8.
    Freiberg S, Zhu XX (2004) Int J Pharm 282:1CrossRefGoogle Scholar
  9. 9.
    Löwik DWPM, van Hest JCM (2004) Chem Soc Rev 33:234CrossRefGoogle Scholar
  10. 10.
    Lim Y-B, Moon K-S, Lee M (2008) J Mater Chem 18:2909CrossRefGoogle Scholar
  11. 11.
    Gallot B (1996) Prog Polym Sci 21:1035CrossRefGoogle Scholar
  12. 12.
    Ladmiral V, Melia E, Haddleton DM (2004) Eur Polym J 40:431CrossRefGoogle Scholar
  13. 13.
    Lutz J-F, Schlaad H (2008) Polymer 49:817CrossRefGoogle Scholar
  14. 14.
    Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Prog Polym Sci 26:1605CrossRefGoogle Scholar
  15. 15.
    Sukhorukov GB, Möhwald H (2007) Trends Biotechnol 25:93CrossRefGoogle Scholar
  16. 16.
    Wang Y, Angelatos AS, Caruso F (2008) Chem Mater 20:848CrossRefGoogle Scholar
  17. 17.
    Vriezema DM, Comellas Aragonès M, Elemans JAAW, Cornelissen JJLM, Rowan AE, Nolte RJM (2005) Chem Rev 105:1445CrossRefGoogle Scholar
  18. 18.
    Fischlechner M, Donath E (2007) Angew Chem Int Ed Engl 46:3184CrossRefGoogle Scholar
  19. 19.
    Kukula H, Schlaad H, Antonietti M, Förster S (2002) J Am Chem Soc 124:1658CrossRefGoogle Scholar
  20. 20.
    Chécot F, Brûlet A, Oberdisse J, Gnanou Y, Mondain-Monval O, Lecommandoux S (2005) Langmuir 21:4308CrossRefGoogle Scholar
  21. 21.
    Chécot F, Lecommandoux S, Klok H-A, Gnanou Y (2003) Eur Phys J E 10:25CrossRefGoogle Scholar
  22. 22.
    Sigel R, Losik M, Schlaad H (2007) Langmuir 23:7196CrossRefGoogle Scholar
  23. 23.
    Gebhardt KE, Ahn S, Venkatachalam G, Savin DA (2008) J Colloid Interf Sci 317:70CrossRefGoogle Scholar
  24. 24.
    Rodríguez-Hernández J, Lecommandoux S (2005) J Am Chem Soc 127:2026CrossRefGoogle Scholar
  25. 25.
    Ayres L, Hans P, Adams J, Lowik DWPM, vanHest JCMJ (2005) J Polym Sci A Polym Chem 43:6355CrossRefGoogle Scholar
  26. 26.
    Cornelissen JJLM, Fischer M, Sommerdijk NAJM, Nolte RJM (1998) Science 280:1427CrossRefGoogle Scholar
  27. 27.
    Geng Y, Discher DE, Justynska J, Schlaad H (2006) Angew Chem Int Ed 45:7578CrossRefGoogle Scholar
  28. 28.
    You L, Schlaad H (2006) J Am Chem Soc 128:13336CrossRefGoogle Scholar
  29. 29.
    Li Z-C, Liang Y-Z, Li F-M (1999) Chem Commun:1557Google Scholar
  30. 30.
    Liang Y-Z, Li Z-C, Li F-M (2000) New J Chem 24:323CrossRefGoogle Scholar
  31. 31.
    Pasparakis G, Alexander C (2008) Angew Chem Int Ed 47:4847CrossRefGoogle Scholar
  32. 32.
    Dong C-M, Sun X-L, Faucher KM, Apkarian RP, Chaikof EL (2004) Biomacromolecules 5:224CrossRefGoogle Scholar
  33. 33.
    Dong C-M, Faucher KM, Chaikof EL (2004) J Polym Sci A Polym Chem 42:5754CrossRefGoogle Scholar
  34. 34.
    Hordyjewicz-Baran Z, You L, Smarsly B, Sigel R, Schlaad H (2007) Macromolecules 40:3901CrossRefGoogle Scholar
  35. 35.
    You L (2007) Dissertation, University of Potsdam, GermanyGoogle Scholar
  36. 36.
    Gress A, Smarsly B, Schlaad H (2008) Macromol Rapid Commun 29:304CrossRefGoogle Scholar
  37. 37.
    Li M, Su S, Xin M, Liao Y (2007) J Colloid Interf Sci 311:285CrossRefGoogle Scholar
  38. 38.
    Brown MD, Schätzlein A, Brownlie A, Jack V, Wang W, Tetley L, Gray AI, Uchegbu IF (2000) Bioconj Chem 11:880CrossRefGoogle Scholar
  39. 39.
    Wang W, Tetley L, Uchegbu IF (2001) J Colloid Interf Sci 237:200CrossRefGoogle Scholar
  40. 40.
    Sun J, Shi Q, Chen X, Guo J, Jing X (2008) Macromol Chem Phys 209:1129CrossRefGoogle Scholar
  41. 41.
    Al-Jamal KT, Sakthievel T, Florence AT (2003) Int J Pharm 254:33CrossRefGoogle Scholar
  42. 42.
    Al-Jamal KT, Sakthievel T, Florence AT (2005) J Pharm Sci 94:102CrossRefGoogle Scholar
  43. 43.
    Börner HG, Schlaad H (2007) Soft Matter 3:394CrossRefGoogle Scholar
  44. 44.
    Hamley IW (2007) Angew Chem Int Ed 46:8128CrossRefGoogle Scholar
  45. 45.
    Toyotama A, Kugimiya S-I, Yamanaka J, Yonese M (2001) Chem Pharm Bull 49:169CrossRefGoogle Scholar
  46. 46.
    Cheon J-B, Jeong Y-I, Cho C-S (1998) Korea Polym J 6:34Google Scholar
  47. 47.
    Cheon J-B, Jeong Y-I, Cho C-S (1999) Polymer 40:2041CrossRefGoogle Scholar
  48. 48.
    Schlaad H (2006) Adv Polym Sci 202:53CrossRefGoogle Scholar
  49. 49.
    Wong MS, Cha JN, Choi KS, Deming TJ, Stucky GD (2002) Nano Lett 2:583CrossRefGoogle Scholar
  50. 50.
    Cha JN, Stucky GD, Morse DE, Deming TJ (2000) Nature 403:289CrossRefGoogle Scholar
  51. 51.
    Holowka EP, Pochan DJ, Deming TJ (2005) J Am Chem Soc 127:12423CrossRefGoogle Scholar
  52. 52.
    Bellomo EG, Wyrsta MD, Pakstis L, Pochan DJ, Deming TJ (2004) Nat Mater 3:244CrossRefGoogle Scholar
  53. 53.
    Holowka EP, Sun VZ, Kamei DT, Deming TJ (2007) Nat Mater 6:52CrossRefGoogle Scholar
  54. 54.
    Iatrou H, Frielinghaus H, Hanski S, Ferderigos N, Ruokolainen J, Ikkala O, Richter D, Mays J, Hadjichristidis N (2007) Biomacromolecules 8:2173CrossRefGoogle Scholar
  55. 55.
    Sun J, Chen X, Deng C, Yu H, Xie Z, Jing X (2007) Langmuir 23:8308CrossRefGoogle Scholar
  56. 56.
    Jan J-S, Lee S, Carr CS, Shantz DF (2005) Chem Mater 17:4310CrossRefGoogle Scholar
  57. 57.
    Koide A, Kishimura A, Osada K, Jang W-D, Yamasaki Y, Kataoka K (2006) J Am Chem Soc 128:5988CrossRefGoogle Scholar
  58. 58.
    Kishimura A, Koide A, Osada K, Yamasaki Y, Kataoka K (2007) Angew Chem Int Ed 46:6085CrossRefGoogle Scholar
  59. 59.
    Kataoka K, Harada A, Nagasaki Y (2001) Adv Drug Deliv Rev 47:113CrossRefGoogle Scholar
  60. 60.
    Reynhout IC, Cornelissen JJLM, Nolte RJM (2007) J Am Chem Soc 129:2327CrossRefGoogle Scholar
  61. 61.
    Boerakker MJ, Botterhuis NE, Bomans PHH, Frederik PM, Meijer EM, Nolte RJM, Sommerdijk NAJM (2006) Chem Eur J 12:6071CrossRefGoogle Scholar
  62. 62.
    Pratten MK, Lloyd JB, Hörpel G, Ringsdorf H (1985) Makromol Chem 186:725CrossRefGoogle Scholar
  63. 63.
    Koňák C, Šubr V, Kostka L, Štěpánek P, Ulbrich K, Schlaad H (2008) Langmuir 24:7092CrossRefGoogle Scholar
  64. 64.
    Regina M, Santella , Li HJ (1975) Biochemistry 14:3604CrossRefGoogle Scholar
  65. 65.
    Boerakker MJ, Hannink JM, Bomans PHH, Frederik PM, Nolte RJM, Meijer EM, Sommerdijk NAJM (2002) Angew Chem Int Ed 41:4239CrossRefGoogle Scholar
  66. 66.
    Smarsly B, Antonietti M (2006) Eur J Inorg Chem:1111Google Scholar
  67. 67.
    Lecommandoux S, Sandre O, Chécot F, Rodríguez-Hernández J, Perzynski R (2005) Adv Mater 17:712CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Annabelle Bertin
    • 1
  • Florian Hermes
    • 1
  • Helmut Schlaad
    • 1
    Email author
  1. 1.Max Planck Institute of Colloids and Interfaces, Colloid DepartmentResearch Campus GolmPotsdamGermany

Personalised recommendations