Advertisement

Context Preserving Focal Probes for Exploration of Volumetric Medical Datasets

  • Yanlin Luo
  • José Antonio Iglesias Guitián
  • Enrico Gobbetti
  • Fabio Marton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5903)

Abstract

During real-time medical data exploration using volume rendering, it is often difficult to enhance a particular region of interest without losing context information. In this paper, we present a new illustrative technique for focusing on a user-driven region of interest while preserving context information. Our focal probes define a region of interest using a distance function which controls the opacity of the voxels within the probe, exploit silhouette enhancement and use non-photorealistic shading techniques to improve shape depiction.

Keywords

Context Information Volume Rendering Context Region Relief Shading Focal Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Engel, K., Hadwiger, M., Kniss, J., Rezk-Salama, C., Weiskopf, D.: Real-time Volume Graphics. AK-Peters (2006)Google Scholar
  2. 2.
    Gobbetti, E., Marton, F., Iglesias-Guitián, J.A.: A single-pass GPU ray casting framework for interactive out-of-core rendering of massive volumetric datasets. The Visual Computer 24(7–9), 797–806 (2008)CrossRefGoogle Scholar
  3. 3.
    Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: Gigavoxels: Ray-guided streaming for efficient and detailed voxel rendering. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D), pp. 15–22 (2009)Google Scholar
  4. 4.
    Hendee, W.R., Wells, P.N.T.: The perception of visual information. Springer, New York (1997)zbMATHGoogle Scholar
  5. 5.
    Ware, C.: Information Visualization:Perception for Design, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2004)Google Scholar
  6. 6.
    Smolnik, S., Nastansky, L., Knieps, T.: Mental representations and visualization processes in organizational memories. In: Proceedings of the Seventh International Conference on Information Visualization (IV 2003), pp. 568–575. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  7. 7.
    Thomas, R.J., Strothotte, T.: Motion enhanced visualization in support of information fusion. In: Proceedings of International Conference on Imaging Science, Systems, and Technology(CISST 2001), pp. 492–497. CSREA Press, Las Vegas (2001)Google Scholar
  8. 8.
    Ebert, D., Rheingans, P.: Volume illustration: non-photorealistic rendering of volume models. In: Proceedings of IEEE Visualization, pp. 195–202 (2000)Google Scholar
  9. 9.
    Treavett, S.M.F., Chen, M.: Pen-and-ink rendering in volume visualization. In: Visualization 2000: Proceedings of the 11th IEEE Visualization 2000 Conference (VIS 2000), Washington, DC, USA. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  10. 10.
    Lu, A., Morris, C.J., Ebert, D.S.: Non-photorealistic volume rendering using stippling techniques. In: Proceedings of IEEE Visualization, pp. 211–218 (2002)Google Scholar
  11. 11.
    Nagy, Z., Schneider, J., Westermann, R.: Interactive volume illustration. In: Proceedings of Vision, Modeling, and Visualization, pp. 497–504 (2002)Google Scholar
  12. 12.
    Dong, F., Clapworthy, G.J., Lin, H., Krokos, M.A.: Nonphotorealistic rendering of medical volume data. IEEE Comput. Graph. Appl. 23(4), 44–52 (2003)CrossRefGoogle Scholar
  13. 13.
    Hauser, H., Mroz, L., Bischiand, G.I., Gröller, M.E.: Two-level volume rendering. IEEE Transactions on Visualization and Computer Graphics 7(3), 242–252 (2001)CrossRefGoogle Scholar
  14. 14.
    Cohen, M., Brodlie, K.: Focus and context for volume visualization. In: TPCG 2004: Proceedings of the Theory and Practice of Computer Graphics 2004 (TPCG 2004), Washington, DC, USA, pp. 32–39. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  15. 15.
    Viola, I., Kanitsar, A., Gröller, M.E.: Importance-driven volume rendering. In: Proceedings of IEEE Visualization 2004, pp. 139–145 (2004)Google Scholar
  16. 16.
    Ropinski, T., Steinicke, F., Hinrichs, K.H.: Tentative results in focus-based medical volume visualization. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG 2005. LNCS, vol. 3638, pp. 218–221. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Bruckner, S., Gröller, M.E.: Volumeshop: An interactive system for direct volume illustration. In: IEEE Visualization, pp. 671–678 (2005)Google Scholar
  18. 18.
    Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustrative context-preserving exploration of volume data. IEEE Trans. Vis. Comput. Graph 12(6), 1559–1569 (2006)CrossRefGoogle Scholar
  19. 19.
    Krüger, J., Schneider, J., Westermann, R.: Clearview:an interactive context preserving hotspot visualization technique, vol. 12, pp. 941–948 (2006)Google Scholar
  20. 20.
    Zhou, J., Döring, A., Tönnies, K.D.: Distance based enhancement for focal region based volume rendering. In: Proceedings of Bildverarbeitung für die Medizin 2004, pp. 199–203 (2004)Google Scholar
  21. 21.
    Tappenbeck, A., Preim, B., Dicken, V.: Distance-based transfer function design: Specification methods and applications. In: Proceedings of SimVis 2006 (2006)Google Scholar
  22. 22.
    Csbfalvi, B., Mroz, L., Hauser, H., König, A., Gröller, M.E.: Fast visualization of object contours by non-photorealistic volume rendering. Computer Graphics Forum 20(3), 452–460 (2001)CrossRefGoogle Scholar
  23. 23.
    Kindlmann, G., Whitaker, R., Tasdizen, T., Möller, T.: Curvature-based transfer functions for direct volume rendering: Methods and applications. In: Proceedings of IEEE Visualization, October 2003, pp. 513–520 (2003)Google Scholar
  24. 24.
    Rusinkiewicz, S., Burns, M., DeCarlo, D.: Exaggerated shading for depicting shape and detail. In: ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 25 (2006)Google Scholar
  25. 25.
    Schlick, C.: A fast alternative to phong’s specular model. In: Graphics Gems IV, San Diego, CA, USA, pp. 385–387. Academic Press Professional, Inc., London (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yanlin Luo
    • 1
  • José Antonio Iglesias Guitián
    • 1
  • Enrico Gobbetti
    • 1
  • Fabio Marton
    • 1
  1. 1.CRS4PulaItaly

Personalised recommendations