Corecursive Algebras: A Study of General Structured Corecursion

  • Venanzio Capretta
  • Tarmo Uustalu
  • Varmo Vene
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5902)


Motivated by issues in designing practical total functional programming languages, we are interested in structured recursive equations that uniquely describe a function not because of the properties of the coalgebra marshalling the recursive call arguments but thanks to the algebra assembling their results. Dualizing the known notions of recursive and wellfounded coalgebras, we call an algebra of a functor corecursive, if from any coalgebra of the same functor there is a unique map to this algebra, and antifounded, if it admits a bisimilarity principle. Differently from recursiveness and wellfoundedness, which are equivalent conditions under mild assumptions, corecursiveness and antifoundedness turn out to be generally inequivalent.


Equivalence Relation Induction Hypothesis Algebra Structure Follow Diagram Commute Structure Recursion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adámek, J., Lücke, D., Milius, S.: Recursive coalgebras for finitary functors. Theor. Inform. and Appl. 41(4), 447–462 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bove, A., Capretta, V.: Modelling general recursion in type theory. Math. Struct. in Comput. Sci. 14(4), 671–708 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Buchholz, W.: A term calculus for (co-)recursive definitions on streamlike data structures. Ann. of Pure and Appl. Logic 136(1–2), 75–90 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Capretta, V., Uustalu, T., Vene, V.: Recursive coalgebras from comonads. Inform. and Comput. 204(4), 437–468 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cockett, R., Fukushima, T.: About Charity. Yellow series report 92/480/18, Dept. of Comput. Sci., Univ. of Calgary (1992)Google Scholar
  6. 6.
    Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994)Google Scholar
  7. 7.
    Di Gianantonio, P., Miculan, M.: A unifying approach to recursive and co-recursive definitions. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 148–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Doornbos, H., Backhouse, R.: Reductivity. Sci. of Comput. Program 26(1-3), 217–236 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Eppendahl, A.: Coalgebra-to-algebra morphisms. Electron. Notes in Theor. Comput. Sci. 29, 8 (1999)MathSciNetGoogle Scholar
  10. 10.
    Giménez, E.: Codifying guarded definitions with recursion schemes. In: Smith, J., Dybjer, P., Nordström, B. (eds.) TYPES 1994. LNCS, vol. 996, pp. 39–59. Springer, Heidelberg (1995)Google Scholar
  11. 11.
    Jacobs, B.: The temporal logic of coalgebras via Galois algebras. Math. Struct. in Comput. Sci. 12(6), 875–903 (2002)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Milius, S.: Completely iterative algebras and completely iterative monads. Inform. and Comput. 196(1), 1–41 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Osius, G.: Categorical set theory: a characterization of the category of sets. J. of Pure and Appl. Algebra 4, 79–119 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Taylor, P.: Intuitionistic sets and ordinals. J. of Symb. Logic 61(3), 705–744 (1996)zbMATHCrossRefGoogle Scholar
  15. 15.
    Taylor, P.: Towards a unified treatment of induction, I: The general recursion theorem. Unpublished draft 35 pp (1996); // A short version (1996) of 5 pp was distributed at Gödel 1996 Brno (August 1996),
  16. 16.
    Taylor, P.: Practical foundations of mathematics. Cambridge Studies in Advanced Mathematics, vol. 59, xi+572. Cambridge Univ. Press, Cambridge (1999)zbMATHGoogle Scholar
  17. 17.
    Turner, D.A.: Total functional programming. J. of Univ. Comput. Sci. 10(7), 751–768 (2004)Google Scholar
  18. 18.
    Uustalu, T., Vene, V.: Primitive (co)recursion and course-of-value (co)iteration, categorically. Informatica 10(1), 5–26 (1999)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Venanzio Capretta
    • 1
  • Tarmo Uustalu
    • 2
  • Varmo Vene
    • 3
  1. 1.School of Computer ScienceUniversity of NottinghamUnited Kingdom
  2. 2.Institute of Cybernetics at Tallinn University of TechnologyEstonia
  3. 3.Department of Computer ScienceUniversity of TartuEstonia

Personalised recommendations