Towards a Semantic Representation of Raster Spatial Data

  • Rolando Quintero
  • Miguel Torres
  • Marco Moreno
  • Giovanni Guzmán
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5892)

Abstract

In this work, a methodology to semantically describe spatial objects within a Raster Spatial Data Set is outlined. This approach attempts to describe the objects contained in the raster data. For example, in Digital Elevation Models (DEM), as case study, we propose to find out landforms contained in the model, giving a description like “In this model there is a mountain having a maximum altitude of 302 meters and located between 19.09383° N and 99.85541° W; also there is a plateau having ...”. This methodology consists of three stages: conceptualization for describing the domain of knowledge to be represented; synthesis for extracting objects from spatial data; and description for representing the objects found in the knowledge domain. The work is focused on establishing the guidelines to semantically process raster spatial data, according to the properties, relationships and concepts involved in the context of the landforms for DEMs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann, F.: Automatic generation of digital elevation models, OEEPE Commision B, DTM Accuracy Meeting, Southampton (1993)Google Scholar
  2. 2.
    Hodgson, M.E.: What cell size does the computed slope / aspect angle represent? Photogrammetric Engineering and Remote Sensing 61(5), 513–517 (1995)MathSciNetGoogle Scholar
  3. 3.
    Etzelmüller, B., Sulebak, J.R.: Developments in the use of digital elevation models in periglacial geomorphology and glaciology. Physische Geographie 41, 35–58 (2000)Google Scholar
  4. 4.
    Weibel, R., DeLotto, J.L.: Automated terrain classification for GIS modeling. In: Proceedings of GIS/LIS 1988, Virginia (1998)Google Scholar
  5. 5.
    Sulebak, J.R., Tallaksen, L.M.: Estimation of areal soil moisture by use of terrain data. Geografiska Annaler 82(A), 89–105 (2000)CrossRefGoogle Scholar
  6. 6.
    Uschold, M., King, M.: Towards a Methodology for Building Ontologies. In: Proceedings of the Workshop on Basic Ontological Issues in Knowledge Sharing IJCAI 1995, Montreal, Canada, pp.6.1–6.10 (1995)Google Scholar
  7. 7.
    Uschold, M., Grüninger, M.: Ontologies: Principles, Methods and Applications. Knowledge Engineering Review 11(2), 93–155 (1996)CrossRefGoogle Scholar
  8. 8.
    Grüninger, M., Fox, M.S.: Methodology for the design and evaluation of ontologies. In: Proceedings of the Workshop on Basic Ontological Issues in Knowledge Sharing IJCAI 1995, Montreal, Canada, pp. 7.3–7.13 (1995)Google Scholar
  9. 9.
    Bernaras, A., Laresgoiti, I., Corera, J.: Building and reusing ontologies for electrical network applications. In: Proceedings of European Conference on Artificial Intelligence, Budapest, Hungary, pp. 298–302. John Wiley & Sons, Chichester (1996)Google Scholar
  10. 10.
    Fernández, M., Gómez, A., Juristo, N.: METHONTOLOGY: From Ontological Art Towards Ontological Engineering. In: Symposium on Ontological Engineering of AAAI, pp. 33–40. Standford University, California (1997)Google Scholar
  11. 11.
    Gómez, A., Fernández, M., Corcho, O.: Ontological Engineering, 2nd edn. Springer, New York (2004)Google Scholar
  12. 12.
    Swartout, B., Ramesh, P., Knight, K., Russ, T.: Toward Distributed Use of Large-Scale Ontologies. In: Symposium on Ontological Engineering of AAAI, pp. 138–148. Standford University, California (1997)Google Scholar
  13. 13.
    Staab, S., Schnurr, H.P., Studer, R., Sure, Y.: Knowledge Processes and Ontologies. IEEE Intelligent Systems 16(1), 26–34 (2001)CrossRefGoogle Scholar
  14. 14.
    Guarino, N., Welty, C.: A Formal Ontology of Properties. In: Dieng, R., Corby, O. (eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 97–112. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Smith, B., Mark, D.: Ontology and Geographic Kinds. In: Proceedings of the 8th International Symposium on Spatial Data Handling, Vancouver, Canada, pp. 308–320 (1998)Google Scholar
  16. 16.
    Mark, D.M., Smith, B., Egenhofer, M., Hirtle, S.: Emerging Research Theme: Ontological Foundations for Geographic Information Science. University Consortium for Geographic Information Science, Technical Report (2001)Google Scholar
  17. 17.
    Quintero, R.: Representación Semántica de Datos Espaciales Raster, Laboratorio de Procesamiento Inteligente de la Información Geoespacial, México, CIC-IPN, Ph. D. Thesis in Spanish (2007)Google Scholar
  18. 18.
    Torres, M.: Representación ontológica basada en descriptores semánticos aplicada a objetos geográficos, Laboratorio de Procesamiento Inteligente de la Información Geoespacial, México, CIC-IPN, Ph. D. Thesis in Spanish (2007)Google Scholar
  19. 19.
    Moreno, M.: Similitud Semántica entre Sistemas de Objetos Geográficos Aplicada a la Generalización de Datos Geo-espaciales. Laboratorio de Procesamiento Inteligente de la Información Geoespacial, México, CIC-IPN, Ph. D. Thesis in Spanish (2007)Google Scholar
  20. 20.
    Torres, M.: Ontological representation based on semantic descriptors applied to geographic objects. Computación y Sistemas 12(3), 356–371 (2009)Google Scholar
  21. 21.
    INEGI: Diccionario de datos topográficos 1:50 000 (Vectorial), Aguascalientes, Instituto Nacional de Estadística Geografía e Informática (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rolando Quintero
    • 1
  • Miguel Torres
    • 1
  • Marco Moreno
    • 1
  • Giovanni Guzmán
    • 1
  1. 1.Intelligent Processing of Geospatial Data Lab-Centre for Computing Research-National, Polytechnic InstituteMexico CityMexico

Personalised recommendations