Advertisement

A Functional Ontology of Observation and Measurement

  • Werner Kuhn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5892)

Abstract

An ontology of observation and measurement is proposed, which models the relevant information processes independently of sensor technology. It is kept at a sufficiently general level to be widely applicable as well as compatible with a broad range of existing and evolving sensor and measurement standards. Its primary purpose is to serve as an extensible backbone for standards in the emerging semantic sensor web. It also provides a foundation for semantic reference systems by grounding the semantics of observations, as generators of data. In its current state, it does not yet deal with resolution and uncertainty, nor does it specify the notion of a semantic datum formally, but it establishes the ontological basis for these as well as other extensions.

Keywords

observation measurement ontology semantics sensors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borgo, S., Masolo, C.: Foundational Choices in DOLCE. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, 2nd edn., pp. 361–382. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    O’Sullivan, B., Stewart, D., Goerzen, J.: Real World Haskell. O’Reilly Media, Sebastopol (2008)Google Scholar
  3. 3.
    Goodchild, M.F.: Citizens as Sensors: the World of Volunteered Geography. GeoJournal 69, 211–221 (2007)CrossRefGoogle Scholar
  4. 4.
    Broering, A., Janowicz, K., Stasch, C., Kuhn, W.: Semantic Challenges for Sensor Plug & Play. In: 9th International Symposium on Web & Wireless Geographical Information Systems (W2GIS 2009). LNCS. Springer, Heidelberg (2009) (in press)Google Scholar
  5. 5.
    Stasch, C., Janowicz, K., Bröring, A., Reis, I., Kuhn, W.: A Stimulus-Centric Algebraic Approach to Sensors and Observations. In: Trigoni, N., Markham, A., Nawaz, S. (eds.) GSN 2009. LNCS, vol. 5659, pp. 169–179. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Jones, R.S.: Physics as Metaphor (1982)Google Scholar
  7. 7.
    Stevens, S.S.: On the Theory of Measurement. Science 103, 677–680 (1946)CrossRefGoogle Scholar
  8. 8.
    Heuvelink, G.: A probabilistic framework for representing and simulating uncertain environmental variables. IJGIS 21, 497–513 (2007)CrossRefGoogle Scholar
  9. 9.
    Boumans, M.: Measurement Outside the Laboratory. Philosophy of Science 72, 850–863 (2005)CrossRefGoogle Scholar
  10. 10.
    Gruber, T.R., Olsen, G.R.: An Ontology for Engineering Mathematics. In: Doyle, J., Torasso, P., Sandewall, E. (eds.) Fourth International Conference on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann, Gustav Stresemann Institut, Bonn (1994)Google Scholar
  11. 11.
    McGhee, J., Henderson, I.A., Sydenham, P.H.: Sensor science: essentials for instrumentation and measurement technology. Measurement 25, 89–113 (1999)CrossRefGoogle Scholar
  12. 12.
    Kim, H.M., Sengupta, A., Fox, M.S., Dalkilic, M.: A Measurement Ontology Generalizable for Emerging Domain Applications on the Semantic Web (2006)Google Scholar
  13. 13.
    Barnaghi, P., Meissner, S., Presser, M., Moessner, K.: Sense and Sens’ability: Semantic Data Modelling for Sensor Networks. In: Cunningham, P., Cunningham, M. (eds.) ICT-Mobile-Summit (2009)Google Scholar
  14. 14.
    Cox, S.: OGC Implementation Specification 07-022r1: Observations and Measurements. Open Geospatial Consortium (2007)Google Scholar
  15. 15.
    Chrisman, N.: Exploring Geographical Information Systems (2001)Google Scholar
  16. 16.
    Kuhn, W.: Semantic Reference Systems. International Journal of Geographic Information Science (Guest Editorial) 17, 405–409 (2003)CrossRefGoogle Scholar
  17. 17.
    Kuhn, W., Raubal, M.: Implementing Semantic Reference Systems. In: Gould, M., Laurini, R., Coulondre, S. (eds.) AGILE 2003 - 6th AGILE Conference on Geographic Information Science, pp. 63–72. Presses Polytechniques et Universitaires Romandes, Lyon (2003)Google Scholar
  18. 18.
    Probst, F.: Observations, measurements and semantic reference spaces. Applied Ontology 3, 63–89 (2008)Google Scholar
  19. 19.
    Probst, F., Espeter, M.: Spatial Dimensionality as Classification Criterion for Qualities. In: International Conference on Formal Ontology in Information Systems (FOIS). IOS Press, Baltimore (2006)Google Scholar
  20. 20.
    Masolo, C., Borgo, S.: Qualities in Formal Ontology. In: Workshop on Foundational Aspects of Ontologies (FOnt 2005), Koblenz, Germany (2005)Google Scholar
  21. 21.
    Gärdenfors, P.: Conceptual Spaces - The Geometry of Thought. The MIT Press, Cambridge (2000)Google Scholar
  22. 22.
    Schade, S.: Ontology-Driven Translation of Geospatial Data. PhD thesis, Insitute for Geoinformatics (ifgi). Westfälische Wilhelms-Universität Münster, Muenster, 153 (2009)Google Scholar
  23. 23.
    Scheider, S., Janowicz, K., Kuhn, W.: Grounding Geographic Categories in the Meaningful Environment. In: Conference on Spatial Information Theory (COSIT). LNCS. Springer, Heidelberg (2009) (in press)Google Scholar
  24. 24.
    Gibson, J.: The Ecological Approach to Visual Perception. Houghton Mifflin Company, Boston (1979)Google Scholar
  25. 25.
    Liu, Y., Goodchild, M.F., Guo, Q., Tian, Y., Wu, L.: Towards a General Field model and its order in GIS. IJGIS 22, 623–643 (2008)CrossRefGoogle Scholar
  26. 26.
    Couclelis, H.: Ontology, Epistemology, Teleology: Triangulating Geographic Information Science. In: Navratil, G. (ed.) Research Trends in Geographic Information Science, pp. 3–16. Springer, Heidelberg (2009) (in press)CrossRefGoogle Scholar
  27. 27.
    Frank, A.: Tiers of Ontology and Consistency Constraints in Geographical Information Systems. International Journal of Geographical Information Science (IJGIS) 15, 667–678 (2001)CrossRefGoogle Scholar
  28. 28.
    Buyong, T.B., Frank, A.U., Kuhn, W.: A Conceptual Model of Measurement-Based Multipurpose Cadastral Systems. URISA Journal 3, 35–49 (1991)Google Scholar
  29. 29.
    Leung, Y., Ma, J.-H., Goodchild, M.F.: A general framework for error analysis in measurement-based GIS I: the basic measurement error model and related concepts. J. Geogr. Systems 6, 325–354 (2004)CrossRefGoogle Scholar
  30. 30.
    Buyong, T.B., Kuhn, W.: Local Adjustment for Measurement-Based Cadastral Systems. Journal of Surveying Engineering and Land Information Systems 52, 25–33 (1992)Google Scholar
  31. 31.
    Kuhn, W.: Editing Spatial Relations. In: Brassel, K., Kishimoto, H. (eds.) 4th International Symposium on Spatial Data Handling (SDH 1990), vol. 1, pp. 423–432. IGU, Zurich (1990)Google Scholar
  32. 32.
    Compton, M., Henson, C., Lefort, L., Neuhaus, H.: A Survey of the Semantic Specification of Sensors. In: 2nd International Workshop on Semantic Sensor Networks. A workshop of the 8th International Semantic Web Conference (ISWC 2009), Washington DC, October 25-29 (2009) (in press)Google Scholar
  33. 33.
    Sheth, A., Henson, C., Sahoo, S.: Semantic Sensor Web. IEEE Internet Computing 12, 78–83 (2008)CrossRefGoogle Scholar
  34. 34.
    Probst, F.: An Ontological Analysis of Observations and Measurements. In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2006. LNCS, vol. 4197, pp. 304–320. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  35. 35.
    Neuhaus, H., Compton, M.: The Semantic Sensor Network Ontology. In: AGILE Workshop on Challenges in Geospatial Data Harmonisation, Hannover, Germany (2009)Google Scholar
  36. 36.
    Webster, J.G.E.: Measurement, Instrumentation, and Sensors Handbook. CRC, Boca Raton (1999)Google Scholar
  37. 37.
    Botts, M., Robin, A.: OpenGIS® Sensor Model Language (SensorML) Implementation Specification. In: OpenGIS® Implementation Specification, OGC® 07-000, Open Geospatial Consortium, OGC (2007)Google Scholar
  38. 38.
    Percivall, G.: OGC Reference Model. OpenGIS® Implementation Specification (version 2.0), OGC 08-062r4. Open Geospatial Consortium, OGC (2008)Google Scholar
  39. 39.
    Juerrens, E.H., Broering, A., Jirka, S.: A Human Sensor Web for Water Availability Monitoring. In: OneSpace 2009 - 2nd International Workshop on Blending Physical and Digital Spaces on the Internet, Berlin, Germany (2009)Google Scholar
  40. 40.
    Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification. Springer, Heidelberg (1985)zbMATHGoogle Scholar
  41. 41.
    Goguen, J.: Types as Theories. In: Reed, G.M., Roscoe, A.W., Wachter, R.F. (eds.) Topology and Category Theory in Computer Science, pp. 357–390. Oxford University Press, Oxford (1991)Google Scholar
  42. 42.
    Frank, A.U., Kuhn, W.: A specification language for interoperable GIS. In: Goodchild, M.F., Egenhofer, M.J., Fegeas, R., Kottman, C.A. (eds.) Interoperating Geographic Information Systems (Proceedings of Interop 1997), pp. 123–132. Kluwer, Norwell MA (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Werner Kuhn
    • 1
  1. 1.Institute for GeoinformaticsUniversity of MuensterMünsterGermany

Personalised recommendations