Advertisement

Group Signatures with Verifier-Local Revocation and Backward Unlinkability in the Standard Model

  • Benoît Libert
  • Damien Vergnaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5888)

Abstract

Group signatures allow users to anonymously sign messages in the name of a group. Membership revocation has always been a critical issue in such systems. In 2004, Boneh and Shacham formalized the concept of group signatures with verifier-local revocation where revocation messages are only sent to signature verifiers (as opposed to both signers and verifiers). This paper presents an efficient verifier-local revocation group signature (VLR-GS) providing backward unlinkability (i.e. previously issued signatures remain anonymous even after the signer’s revocation) with a security proof in the standard model (i.e. without resorting to the random oracle heuristic).

Keywords

Group signatures verifier-local revocation bilinear maps backward unlinkability standard model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical Group Signatures without Random Oracles. Cryptology ePrint Archive, Report 2005/385 (2005), http://eprint.iacr.org/2005/385
  2. 2.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A Practical and Provably Secure Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Ateniese, G., Song, D., Tsudik, G.: Quasi-efficient revocation of group signatures. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: Formal Definitions, Simplified Requirements, and a Construction Based on General Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Shi, H., Zhang, C.: Foundations of Group Signatures: The Case of Dynamic Groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. SIAM J. of Computing 32(3), 586–615 (2003); Extended abstract in Crypto 2001. LNCS, vol. 2139, pp. 213–229 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM-CCS 2004, pp. 168–177. ACM Press, New York (2004)Google Scholar
  12. 12.
    Boyen, X., Waters, B.: Full-Domain Subgroup Hiding and Constant-Size Group Signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Boyen, X., Waters, B.: Compact Group Signatures Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Bresson, E., Stern, J.: Efficient Revocation in Group Signatures. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Brickell, E.: An efficient protocol for anonymously providing assurance of the container of the private key. Submission to the Trusted Computing Group (April 2003)Google Scholar
  16. 16.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. Journal of the ACM 51(4), 557–594 (2004)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  18. 18.
    Choi, S.G., Park, K., Yung, M.: Short Traceable Signatures Based on Bilinear Pairings. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 88–103. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Fiat, A., Shamir, A.: How to prove yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  21. 21.
    Furukawa, J., Imai, H.: An Efficient Group Signature Scheme from Bilinear Maps. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 455–467. Springer, Heidelberg (2005)Google Scholar
  22. 22.
    Goldwasser, S., Tauman-Kalai, Y.: On the (In)security of the Fiat-Shamir Paradigm. In: FOCS 2003, pp. 102–115 (2003)Google Scholar
  23. 23.
    Groth, J.: Simulation-Sound NIZK Proofs for a Practical Language and Constant Size Group Signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Groth, J.: Fully anonymous group signatures without random oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Hofheinz, D., Kiltz, E.: Programmable Hash Functions and Their Applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg (2008)Google Scholar
  27. 27.
    Kiayias, A., Tsiounis, Y., Yung, M.: Traceable Signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)Google Scholar
  28. 28.
    Kiayias, A., Yung, M.: Group Signatures: Provable Security, Efficient Constructions and Anonymity from Trapdoor-Holders. Cryptology ePrint Archive: Report 2004/076 (2004), http://eprint.iacr.org/2004/076
  29. 29.
    Kiltz, E., Mityagin, A., Panjwani, S., Raghavan, B.: Append-Only Signatures. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 434–445. Springer, Heidelberg (2005)Google Scholar
  30. 30.
    libert, B., Yung, M.: Efficient Traceable Signatures in the Standard Model. In: Shacham, H. (ed.) Pairing 2009. LNCS, vol. 5671, pp. 187–205. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Naor, M.: On Cryptographic Assumptions and Challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)Google Scholar
  32. 32.
    Nguyen, L., Safavi-Naini, R.: Efficient and Provably Secure Trapdoor-Free Group Signature Schemes from Bilinear Pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)Google Scholar
  33. 33.
    Nakanishi, T., Funabiki, N.: Verifier-local revocation group signature schemes with backward unlinkability from bilinear maps. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Nakanishi, T., Funabiki, N.: A Short Verifier-Local Revocation Group Signature Scheme with Backward Unlinkability. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 17–32. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  35. 35.
    Scott, M., Barreto, P.S.L.M.: Compressed Pairings. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004)Google Scholar
  36. 36.
    Song, D.X.: Practical forward secure group signature schemes. In: ACM-CCS 2001, pp. 225–234. ACM Press, New York (2001)Google Scholar
  37. 37.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567. Springer, Heidelberg (2002)Google Scholar
  38. 38.
    Zhou, S., Lin, D.: A Shorter Group Signature with Verifier-Location Revocation and Backward Unlinkability. Cryptology ePrint Archive: Report 2006/100 (2006), http://eprint.iacr.org/2006/100
  39. 39.
    Zhou, S., Lin, D.: Shorter Verifier-Local Revocation Group Signatures from Bilinear Maps. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 126–143. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Benoît Libert
    • 1
  • Damien Vergnaud
    • 2
  1. 1.Microelectronics Laboratory, Crypto GroupUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.École normale supérieure – C.N.R.S. – I.N.R.I.A.Paris CEDEX 05France

Personalised recommendations