Advertisement

Improved Garbled Circuit Building Blocks and Applications to Auctions and Computing Minima

  • Vladimir Kolesnikov
  • Ahmad-Reza Sadeghi
  • Thomas Schneider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5888)

Abstract

We consider generic Garbled Circuit (GC)-based techniques for Secure Function Evaluation (SFE) in the semi-honest model.

We describe efficient GC constructions for addition, subtraction, multiplication, and comparison functions. Our circuits for subtraction and comparison are approximately two times smaller (in terms of garbled tables) than previous constructions. This implies corresponding computation and communication improvements in SFE of functions using our efficient building blocks. The techniques rely on recently proposed “free XOR” GC technique.

Further, we present concrete and detailed improved GC protocols for the problem of secure integer comparison, and related problems of auctions, minimum selection, and minimal distance. Performance improvement comes both from building on our efficient basic blocks and several problem-specific GC optimizations. We provide precise cost evaluation of our constructions, which serves as a baseline for future protocols.

Keywords

Secure Computation Garbled Circuit Millionaires Problem Auctions Minimum Distance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, L.v., Hopper, N.J., Langford, J.: Covert two-party computation. In: ACM Symposium on Theory of Computing (STOC 2005), pp. 513–522. ACM, New York (2005)CrossRefGoogle Scholar
  2. 2.
    Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Armknecht, F., Sadeghi, A.-R.: A new approach for algebraically homomorphic encryption. Cryptology ePrint Archive, Report 2008/422 (2008)Google Scholar
  4. 4.
    Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.-R., Schneider, T.: Secure evaluation of private linear branching programs with medical applications. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 424–439. Springer, Heidelberg (2009), http://eprint.iacr.org/2009/195 CrossRefGoogle Scholar
  5. 5.
    Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)Google Scholar
  6. 6.
    Blake, I.F., Kolesnikov, V.: Strong conditional oblivious transfer and computing on intervals. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Blake, I.F., Kolesnikov, V.: Conditional encrypted mapping and comparing encrypted numbers. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 206–220. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Boyar, J., Damgård, I., Peralta, R.: Short non-interactive cryptographic proofs. Journal of Cryptology 13(4), 449–472 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Boyar, J., Peralta, R.: Short discreet proofs. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 131–142. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of boolean functions over the basis ( ∧ , ⊕ , 1). Theor. Comput. Sci. 235(1), 43–57 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote diagnostics. In: ACM Conference on Computer and Communications Security (CCS 2007), pp. 498–507. ACM, New York (2007)CrossRefGoogle Scholar
  13. 13.
    Di Crescenzo, G.: Private selective payment protocols. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 72–89. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Damgård, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-line auctions. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 416–430. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Damgård, I., Geisler, M., Krøigaard, M.: A correction to efficient and secure comparison for on-line auctions. Cryptology ePrint Archive, Report 2008/321 (2008)Google Scholar
  16. 16.
    Damgård, I., Geisler, M., Krøigaard, M.: Homomorphic encryption and secure comparison. Journal of Applied Cryptology 1(1), 22–31 (2008)zbMATHCrossRefGoogle Scholar
  17. 17.
    Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, Lagendijk, I., Toft, T.: Privacy-preserving face recognition. In: Privacy Enhancing Technologies (PET 2009). LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Feigenbaum, J., Pinkas, B., Ryger, R.S., Saint-Jean, F.: Secure computation of surveys. In: EU Workshop on Secure Multiparty Protocols (SMP). ECRYPT (2004)Google Scholar
  20. 20.
    Fischlin, M.: A cost-effective pay-per-multiplication comparison method for millionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–472. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Garay, J.A., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 330–342. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM Symposium on Theory of Computing (STOC 2009), pp. 169–178. ACM, New York (2009)CrossRefGoogle Scholar
  23. 23.
    Giry, D., Quisquater, J.-J.: Cryptographic key length recommendation (March 2009), http://keylength.com
  24. 24.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computation against covert adversaries. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 289–306. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)Google Scholar
  27. 27.
    Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on committed inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Jarrous, A., Pinkas, B.: Secure hamming distance based computation and its applications. In: Applied Cryptography and Network Security (ACNS 2009). LNCS, vol. 5536, pp. 107–124. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers. Proceedings of the SSSR Academy of Sciences 145, 293–294 (1962)Google Scholar
  30. 30.
    Kerschbaum, F.: Practical privacy-preserving benchmarking. In: International Information Security Conference (SEC 2008), vol. 278, pp. 17–31 (2008)Google Scholar
  31. 31.
    Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 136–155. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  32. 32.
    Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. Cryptology ePrint Archive, Report 2009/411 (2009)Google Scholar
  33. 33.
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation. ECCC Report TR04-063, Electronic Colloquium on Computational Complexity, ECCC (2004)Google Scholar
  35. 35.
    Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    Lipmaa, H.: Verifiable homomorphic oblivious transfer and private equality test. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 416–433. Springer, Heidelberg (2003)Google Scholar
  37. 37.
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party computation system. In: USENIX (2004)Google Scholar
  38. 38.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: ACM-SIAM Symposium On Discrete Algorithms (SODA 2001). Society for Industrial and Applied Mathematics, pp. 448–457 (2001)Google Scholar
  39. 39.
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: ACM Conference on Electronic Commerce, pp. 129–139 (1999)Google Scholar
  40. 40.
    Nielsen, J.B., Orlandi, C.: Lego for two-party secure computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)Google Scholar
  41. 41.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  42. 42.
    Paus, A., Sadeghi, A.-R., Schneider, T.: Practical secure evaluation of semi-private functions. In: Applied Cryptography and Network Security (ACNS 2009). LNCS, vol. 5536, pp. 89–106. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  43. 43.
    Qi, Y., Atallah, M.J.: Efficient privacy-preserving k-nearest neighbor search. In: International Conference on Distributed Computing Systems (ICDCS 2008), pp. 311–319. IEEE, Los Alamitos (2008)Google Scholar
  44. 44.
    Shaneck, M., Kim, Y., Kumar, V.: Privacy preserving nearest neighbor search. In: International Conference on Data Mining - Workshops (ICDMW 2006), pp. 541–545. IEEE, Los Alamitos (2006)CrossRefGoogle Scholar
  45. 45.
    Yao, A.C.: Protocols for secure computations. In: Symposium on Foundations of Computer Science (SFCS 1982), pp. 160–164. IEEE, Los Alamitos (1982)CrossRefGoogle Scholar
  46. 46.
    Yao, A.C.: How to generate and exchange secrets. In: IEEE Symposium on Foundations of Computer Science (FOCS 1986), pp. 162–167. IEEE, Los Alamitos (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Vladimir Kolesnikov
    • 1
  • Ahmad-Reza Sadeghi
    • 2
  • Thomas Schneider
    • 2
  1. 1.Bell LaboratoriesMurray HillUSA
  2. 2.Horst Görtz Institute for IT-SecurityRuhr-University BochumGermany

Personalised recommendations