An Analysis of Locust Swarms on Large Scale Global Optimization Problems

  • Stephen Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5865)

Abstract

Locust Swarms are a recently-developed multi-optima particle swarm. To test the potential of the new technique, they have been applied to the 1000-dimension optimization problems used in the recent CEC2008 Large Scale Global Optimization competition. The results for Locust Swarms are competitive on these problems, and in particular, much better than other particle swarm-based techniques. An analysis of these results leads to a simple guideline for parameter selection in Locust Swarms that has a broad range of effective performance. Further analysis also demonstrates that “dimension reductions” during the search process are the single largest factor in the performance of Locust Swarms and potentially a key factor in the performance of other search techniques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beyer, H.-G., Schwefel, H.-P.: Evolution Strategies: A comprehensive introduction. Natural Computing 1, 3–52 (2002)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Brest, J., Zamuda, A., Boskovic, B., Maucec, M.S., Zumer, V.: High-Dimensional Real-Parameter Optimization using Self-Adaptive Differential Evolution Algorithm with Population Size Reduction. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 2032–2039. IEEE Press, Los Alamitos (2008)CrossRefGoogle Scholar
  3. 3.
    Chen, S.: Locust Swarms – A New Multi-Optima Search Technique. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation, pp. 1745–1752. IEEE Press, Los Alamitos (2009)CrossRefGoogle Scholar
  4. 4.
    Chen, S., Lupien, V.: Optimization in Fractal and Fractured Landscapes using Locust Swarms. In: Korb, K., Randall, M., Hendtlass, T. (eds.) ACAL 2009. LNCS (LNAI), vol. 5865, pp. 211–220. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Chen, S., Miura, K., Razzaqi, S.: Analyzing the Role of “Smart” Start Points in Coarse Search-Greedy Search. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS (LNAI), vol. 4828, pp. 13–24. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Hendtlass, T.: WoSP: A Multi-Optima Particle Swarm Algorithm. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 727–734. IEEE Press, Los Alamitos (2005)CrossRefGoogle Scholar
  7. 7.
    Hsieh, S.-T., Sun, T.-Y., Liu, C.-C., Tsai, S.-J.: Solving Large Scale Global Optimization Using Improved Particle Swarm Optimizer. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 1777–1784. IEEE Press, Los Alamitos (2008)CrossRefGoogle Scholar
  8. 8.
    Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press, Los Alamitos (1995)CrossRefGoogle Scholar
  9. 9.
    MacNich, C.: Towards Unbiased Benchmarking of Evolutionary and Hybrid Algorithms for Real-valued Optimisation. Connection Science 19(4), 361–385 (2007)CrossRefGoogle Scholar
  10. 10.
    MacNish, C., Yao, X.: Direction Matters in High-Dimensional Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 2372–2379. IEEE Press, Los Alamitos (2008)CrossRefGoogle Scholar
  11. 11.
    Norman, M.G., Moscato, P.: A Competitive and Cooperative Approach to Complex Combinatorial Search, Caltech Concurrent Computation Program, C3P Report 790 (1989)Google Scholar
  12. 12.
    Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M., Yang, Z.: Benchmark Functions for the CEC 2008 Special Session and Competition on Large Scale Global Optimization. Technical Report (2007), http://www.ntu.edu.sg/home/EPNSugan
  13. 13.
    Tseng, L.-Y., Chen, C.: Multiple Trajectory Search for Large Scale Global Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3052–3059. IEEE Press, Los Alamitos (2008)CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Li, B.: A Restart Univariate Estimation of Distribution Algorithm: Sampling under Mixed Gaussian and Levy probability Distribution. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3917–3924. IEEE Press, Los Alamitos (2008)CrossRefGoogle Scholar
  15. 15.
    Yang, Z., Tang, K., Yao, X.: Multilevel Cooperative Coevolution for Large Scale Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 1663–1670. IEEE Press, Los Alamitos (2008)CrossRefGoogle Scholar
  16. 16.
    Zamuda, A., Brest, J., Boskovic, B., Zumer, V.: Large Scale Global Optimization using Differential Evolution with Self-adaptation and Cooperative Co-evolution. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3718–3725. IEEE Press, Los Alamitos (2008)CrossRefGoogle Scholar
  17. 17.
    Zhao, S.Z., Liang, J.J., Suganthan, P.N., Tasgetiren, M.F.: Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search for Large Scale Global Optimization. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation, pp. 3845–3852. IEEE Press, Los Alamitos (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stephen Chen
    • 1
  1. 1.School of Information TechnologyYork UniversityToronto

Personalised recommendations