A Performance Study of Event Processing Systems

  • Marcelo R. N. Mendes
  • Pedro Bizarro
  • Paulo Marques
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5895)


Event processing engines are used in diverse mission-critical scenarios such as fraud detection, traffic monitoring, or intensive care units. However, these scenarios have very different operational requirements in terms of, e.g., types of events, queries/patterns complexity, throughput, latency and number of sources and sinks. What are the performance bottlenecks? Will performance degrade gracefully with increasing loads? In this paper we make a first attempt to answer these questions by running several micro-benchmarks on three different engines, while we vary query parameters like window size, window expiration type, predicate selectivity, and data values. We also perform some experiments to assess engines scalability with respect to number of queries and propose ways for evaluating their ability in adapting to changes in load conditions. Lastly, we show that similar queries have widely different performances on the same or different engines and that no engine dominates the other two in all scenarios.


Benchmarking Complex Event Processing Micro-benchmarks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, D.J., et al.: Aurora. A New Model and Architecture for Data Stream Management. VLDB Journal 12, 120–139 (2003)CrossRefGoogle Scholar
  2. 2.
    Arasu, A., et al.: STREAM: The Stanford Stream Data Manager. In: Proc. SIGMOD 2003 (2003)Google Scholar
  3. 3.
    Arasu, A., et al.: Linear Road: A Stream Data Management Benchmark. In: Proc. of VLDB 2004 (2004)Google Scholar
  4. 4.
    Babcock, B., et al.: Models and Issues in Data Stream Systems. In: Proc. of SIGMOD 2002 (2002)Google Scholar
  5. 5.
    Berndtsson, M., et al.: Performance Evaluation of Object-Oriented Active Database Management Systems Using the BEAST Benchmark. Theory and Practice of Object Systems 4(3), 135–149 (1998)CrossRefGoogle Scholar
  6. 6.
    Bizarro, P., et al.: Event Processing Use Cases. In: Tutorial, DEBS 2009, Nashville USA (2009)Google Scholar
  7. 7.
    Chandrasekaran, S., et al.: TelegraphCQ: Continuous dataflow processing for an uncertain world. In: Proc. of CIDR 2003 (2003)Google Scholar
  8. 8.
    Dekkers, P.: Master Thesis Computer Science. Complex Event Processing. Radboud University Nijmegen, Thesis number 574 (October 2007)Google Scholar
  9. 9.
  10. 10.
    Chakravarthy, S., Mishra, D.: Snoop: An Expressive Event Specification Language for Active Databases. Data Knowl. Eng. (DKE) 14(1), 1–26 (1994)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Golab, L., Özsu, M.T.: Issues in data stream management. SIGMOD Record 32(2), 5–14 (2003)CrossRefGoogle Scholar
  13. 13.
    Gray, J. (ed.): The Benchmark Handbook for Database and Transaction Processing Systems, 2nd edn. Morgan Kaufmann, San Francisco (1993)zbMATHGoogle Scholar
  14. 14.
    Gray, J., et al.: Data Cube: A Relational Aggregation Operator Generalizing Group-by, Cross-Tab, and Sub Totals. Data Min. Knowl. Discov. 1(1), 29–53 (1997)CrossRefGoogle Scholar
  15. 15.
    Mendes, M.R.N., Bizarro, P., Marques, P.: A Framework for Performance Evaluation of Complex Event Processing Systems. In: Proc. of DEBS 2008 (2008)Google Scholar
  16. 16.
    Motwani, R., et al.: Query Processing, Resource Management, and Approximation in a Data Stream Management System. In: Proc. of CIDR 2003 (2003)Google Scholar
  17. 17.
  18. 18.
    Sachs, K., Kounev, S., Bacon, J.M., Buchmann, A.: Workload Characterization of the SPECjms2007 Benchmark. In: Wolter, K. (ed.) EPEW 2007. LNCS, vol. 4748, pp. 228–244. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    STAC Report: Aleri Order Book Consolidation on Intel Tigertown and Solaris 10,
  21. 21.
    Stream Query Repository,
  22. 22.
    White, S., Alves, A., Rorke, D.: WebLogic event server: a lightweight, modular application server for event processing. In: Proc. of DEBS 2008 (2008)Google Scholar
  23. 23.
    Wu, E., Diao, Y., Rizvi, S.: High Performance Complex Event Processing over Streams. In: Proc. of SIGMOD 2006 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marcelo R. N. Mendes
    • 1
  • Pedro Bizarro
    • 1
  • Paulo Marques
    • 1
  1. 1.Dep. Eng. InformáticaCISUC, University of CoimbraCoimbraPortugal

Personalised recommendations