Modern Marine Stromatolites of Little Darby Island, Exuma Archipelago, Bahamas: Environmental Setting, Accretion Mechanisms and Role of Euendoliths

  • R. Pamela ReidEmail author
  • Jamie S. Foster
  • Gudrun Radtke
  • Stjepko Golubic
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 131)


The search for modern stromatolites was initiated by geologists in an attempt to understand the processes that governed the Earth for about five sixths of the history of Life. Entire land- and seascapes dominated by stromatolites are rare in the modern world of plants and animals.


Extracellular Polymeric Substance Carbonate Sand Wave Turbulence Cyanobacterial Biomass Extracellular Polymeric Substance Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This is Research Initiative on Bahamian Stromatolites (RIBS) contribution #59. The international collaboration was supported by the Alexander-von-Humboldt Foundation, Bad Godesberg, and Hanse Wissenschaftskolleg, Delmenhorst, Germany. We appreciate the critical comments of Joachim Reitner and Gernot Arp.


  1. Al-Thukair AA, Golubic S (1991a) Five new Hyella species from the Arabian Gulf. Algological Studies 64:167–197Google Scholar
  2. Al-Thukair AA, Golubic S (1991b) New endolithic cyanobacteria from the Arabian Gulf. I. Hyella immanis sp. nov. Journal of Phycology 27:766–780CrossRefGoogle Scholar
  3. Al-Thukair AA, Golubic S, Rosen G (1994) New euendolithic cyanobacteria from the Bahama Bank and the Arabian Gulf: Hyella racemus sp. nov. Journal of Phycology 30:764–769CrossRefGoogle Scholar
  4. Andres MS, Sumner DY, Reid RP, Swart PK (2006) Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites. Geology 34:973–976CrossRefGoogle Scholar
  5. Awramik SM, Riding R (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation. Proceedings of the National Academy of Sciences of the United States of America 85:1327–1329CrossRefGoogle Scholar
  6. Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Przekop KM, Visscher PT (2006) Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sedimentary Geology 185:131–145CrossRefGoogle Scholar
  7. Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411CrossRefGoogle Scholar
  8. Browne KM (1993) Lamination in Recent Bahamian Subtidal Stromatolites: Origin and Lithification. Unpublished PhD dissertation, University of Miami, Coral Gables, pp 296Google Scholar
  9. Decho AW, Visscher PT, Reid RP (2005) Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeography, Palaeoclimatology, Palaeoecology 219:71–86CrossRefGoogle Scholar
  10. Dill RF, Shinn EA, Jones AT, Kelly K, Steinin RP (1986) Giant subtidal stromatolites forming in normal saline waters. Nature 324:55–58CrossRefGoogle Scholar
  11. Dravis JJ (1983) Hardened subtidal stromatolites, Bahamas. Science 219:385–386CrossRefGoogle Scholar
  12. Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology 13:429–438CrossRefGoogle Scholar
  13. Feldmann M, Mackenzie J (1998) Stromatolite thrombolite association in a modern environment, Lee Stocking Island, Bahamas. Palaios 13:201–212CrossRefGoogle Scholar
  14. Foster JS, Green SJ (2010) Microbial diversity in modern marine stromatolites. In: Tewari V (ed) Cellular Origin, Life in Extreme Habitats and Astrobiology: Stromatolites. Springer, Berlin, in pressGoogle Scholar
  15. Garcia-Pichel F (2006) Plausible mechanisms for the boring on carbonates by microbial autotrophs. Sedimentary Geology 185:205–213CrossRefGoogle Scholar
  16. Golubic S, Browne KM (1996) Schizothrix gebeleinii sp. nov. builds subtidal stromatolites, Lee Stocking Island, Bahamas. Algological Studies 83:273–290Google Scholar
  17. Golubic S, Al-Thukair AA, Gektidis M (1996) New endolithic cyanobacteria from the Arabian Gulf and the Bahama Bank: Solentia sanguinea sp. nov. Algological Studies 83:291–301Google Scholar
  18. Kobluk DR, Risk MJ (1977a) Micritization and carbonate-grain binding by endolithic algae. American Association of Petroleum Geologist Bulletin 61:1069–1082Google Scholar
  19. Kobluk DR, Risk MJ (1977b) Calcification of exposed filaments of endolithic algae, micrite envelope formation and sediment production. Journal of Sedimentary Petrology 47:517–528Google Scholar
  20. Krumbein WE, Brehm U, Gorbushina AA, Levit G, Palinska KA (2003) Biofilm, biodictyon and biomat – biolaminites, ooolites, stromatolithes – geophysiology, global mechanism and parahistology. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and Recent Biofilms. Kluwer Acad Publ, Dordrecht, pp 1–27Google Scholar
  21. Logan BW (1961) Cryptozoon and associate stromatolites from the Recent, Shark Bay, Western Australia. Journal of Geology 69:517–533CrossRefGoogle Scholar
  22. Lukas KJ, Golubic S (1981) New endolithic cyanophytes from the North Atlantic Ocean: I. Cyanosaccus piriformis gen. et sp. nov. Jounral of Phycology 17:224–229CrossRefGoogle Scholar
  23. Macintyre IG, Prufert-Bebout L, Reid RP (2000) The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology 47:915–921CrossRefGoogle Scholar
  24. Pentecost A, Riding R (1986) Calcification in cyanobacteria. In: Leadbeater BSC, Riding R (eds) Biomineralization of lower plants and animals. SAS 30, Clarendon, Oxford, pp 73–90Google Scholar
  25. Planavsky N, Ginsburg RN (2009) Taphonomy of modern marine Bahamian microbialites. Palaios 24:5–17CrossRefGoogle Scholar
  26. Radtke G, Golubic S (2010) Microbial euendolithic assemblages and microborings in intertidal and shallow marine habitats: insight in cyanobacterial speciation. In: Reitner J, Queric, N-V, Arp G (eds) Advances in Stromatolite Geobiology. Lecture Notes in Earth Sciences 131, Springer, Berlin, pp 213–241Google Scholar
  27. Radtke G, Le Campion-Alsumard T, Golubic S (1996) Microbial assemblages of the bioerosional “notch” along tropical limestone coasts. Algological Studies 83:469–482Google Scholar
  28. Radtke G, Gektidis M, Golubic S, Hofmann K, Kiene WE, Le Campion-Alsumard T (1997a) The identity of an endolithic alga: Ostreobium brabantium Weber-van Bosse is recognized as carbonate-penetrating rhizoids of Acetabularia (Chlorophyta, Dasycladales). Courier Forschungsinstitut Senckenberg 201:341–347Google Scholar
  29. Radtke G, Le Campion-Alsumard T, Golubic S (1997b) Microbial assemblages involved in tropical coastal bioerosion: An Atlantic-Pacific comparison. Proceedings of the 8th International Coral Reef Symposium 2:1825–1830Google Scholar
  30. Reid RP, Browne KM (1991) Intertidal stromatolites in a fringing Holocene reef complex, Bahamas. Geology 19:15–18CrossRefGoogle Scholar
  31. Reid RP, Macintyre (2000) Microboring versus recrystallization: Further insight into the micritization process. Journal of Sedimentary Research 70:24–28CrossRefGoogle Scholar
  32. Reid RP, Macintyre IG, Steneck RS, Browne KM, Miller TE (1995) Stromatolites in the Exuma Cays, Bahamas: Uncommonly common. Facies 33:1–18CrossRefGoogle Scholar
  33. Reid RP, Macintyre IG, Steneck RS (1999) A microbialite/algal ridge fringing reef complex, Highborne Cay, Bahamas. Atoll Research Bulletin 466:1–18CrossRefGoogle Scholar
  34. Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz CP, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992CrossRefGoogle Scholar
  35. Reid RP, James NP, Macintyre IG, Dupraz CP, Burne RV (2003) Shark Bay stromatolites: Microfabrics and reinterpretation of origins. Facies 49:45–53Google Scholar
  36. Reitner J (1993) Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia) – Formation and concepts. Facies 29:3–40CrossRefGoogle Scholar
  37. Reitner J, Gautret P, Marin F, Neuweiler F (1995) Automicrites in a modern microbialite – Formation model via organic matrices (Lizard Island, Great Barrier Reef, Australia). Bulletin de l´Institut océanographique Monaco 14(2):237–263Google Scholar
  38. Schneider J, Le Campion-Alsumard T (1999) Construction and destruction of carbonates by marine and freshwater cyanobacteria. European Journal of Phycology 34:417–426CrossRefGoogle Scholar
  39. Seong-Joo Lee, Browne KM, Golubic S (2000) On stromatolite lamination. In: Riding R, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 16–24Google Scholar
  40. Stolz JF, Reid RP, Visscher PT, Decho AW, Norman RS, Aspden RJ, Bowlin EM, Franks J, Foster JS, Paterson DM, Przekop KM, Underwood GJC, Prufert-Bebout L (2009) The microbial communities of the modern marine stromatolites at Highborn Cay, Bahamas. Atoll Research Bulletin 567:1–29CrossRefGoogle Scholar
  41. Tribollet A, Golubic S, Radtke G, Reitner J (2010) On Microbiocorrosion. In: Reitner J, Queric, N-V, Arp G (eds) Advances in Stromatolite Geobiology. Lecture Notes in Earth Sciences 131, Springer, Berlin, pp 243–253Google Scholar
  42. Trichet J, Défarge C (1995) Non-biologically supported organomineralization. Bulletin de l´Institut océanographique Monaco Spec 14:203–236Google Scholar
  43. Visscher PT, Reid RP, Bebout BM (2000) Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28: 919–922CrossRefGoogle Scholar
  44. Wild C, Laforsch C, Huettel M. (2006) Detection and enumeration of microbial cells within highly porous calcareous reef sands. Marine and Freshwater Research 57:415–420CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  • R. Pamela Reid
    • 1
    Email author
  • Jamie S. Foster
    • 2
    • 3
  • Gudrun Radtke
    • 4
  • Stjepko Golubic
    • 5
  1. 1.Marine Geology and Geophysics, Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  2. 2.Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleUSA
  3. 3.Space Life Sciences LabKennedy Space CenterMerritt IslandUSA
  4. 4.Hessisches Landesamt für Umwelt und GeologieWiesbadenGermany
  5. 5.Biological Science CenterBoston UniversityBostonUSA

Personalised recommendations