The Nature of Stromatolites: 3,500 Million Years of History and a Century of Research

  • Robert RidingEmail author
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 131)


Stromatolites are widely regarded as layered, early lithified, authigenic microbial structures – often domical or columnar in form – that developed at the sediment water interface in freshwater, marine and evaporitic environments


Microbial Carbonate Bacterial Sulphate Reduction Microbial Crust Cement Crust Early Lithification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am grateful to Joachim Reitner and the Organizing Committee for supporting my participation in the 2008 Kalkowsky Symposium. Brian Chatterton and Eric Mountjoy generously provided photographs of Eozoön and Shark Bay columns, respectively, and Jody Webster a thin-section of reef crust from Kohala, Hawaii. Canadian Society of Petroleum Geologists kindly gave permission to reproduce Fig.15. I am indebted to Phil Fralick, Dawn Sumner and Pieter Visscher, respectively, for showing me the Gunflint, Campbellrand-Malmani, and Lagoa Pitanguinha localities. Gernot Arp and Joachim Reitner made helpful suggestions that improved the final manuscript.


  1. Abbott G (1914) Is ‘Atikokania lawsoni’ a concretion? Nature 94: 477–478CrossRefGoogle Scholar
  2. Adelman J (2007) Eozoön: debunking the dawn animal. Endeavour 31: 94–98CrossRefGoogle Scholar
  3. Aitken JD (1967) Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology 37: 1163–1178Google Scholar
  4. Aitken JD (1989) Giant “algal” reefs, Middle/Upper Proterozoic Little Dal Group (>770, <1200Ma), Mackenzie Mountains, N.W.T., Canada. In: Geldsetzer HHJ, James NP, Tebbutt GE (eds) Reefs, Canada and Adjacent Area. Canadian Society of Petroleum Geologists, Memoir 13: 13–23Google Scholar
  5. Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441: 714–718CrossRefGoogle Scholar
  6. Arp G, Reimer A, Reitner J (2003) Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. Journal of Sedimentary Research 73: 105–127CrossRefGoogle Scholar
  7. Arp G, Bissett A, Brinkmann N, Cousin S, de Beer D, Friedl T, Mohr KI, Neu TR, Reimer A, Shiraishi F, Stackebrandt E, Zippel B (2010) Tufa-forming biofilms of German karstwater streams: microorganisms, exopolymers, hydrochemistry and calcification. In: Pedley M, Rogerson M (eds) Tufas and Speleothems. Geological Society of London Special Publication 336: 83–118Google Scholar
  8. Awramik SM, Grey K (2005) Stromatolites: biogenicity, biosignatures, and bioconfusion. Proceedings of SPIE 5906: 5906P-1-5906P-9Google Scholar
  9. Awramik SM, Margulis L (1974) Stromatolite Newsletter 2: 5Google Scholar
  10. Awramik M, Riding R (1986) “Golden Age” stromatolites and modern analogs. Society of Economic Paleontologists and Mineralogists Annual Midyear Meeting, Raleigh, North Carolina, September 1986, Abstracts III: 3–4Google Scholar
  11. Awramik SM, Riding R (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation. Proceedings of the National Academy of Sciences of the United States of America 85: 1327–1329CrossRefGoogle Scholar
  12. Bailey L, Matthew GF (1872) Preliminary report on the geology of New Brunswick. Geological Survey of Canada, Reports of Progress 1870–1871, 15–57Google Scholar
  13. Barghoorn ES, Tyler SA (1965) Microorganisms from the Gunflint Chert. Science 147: 563–575CrossRefGoogle Scholar
  14. Batchelor MT, Burne RV, Henry BI, Watt SD (2000) Deterministic KPZ model for stromatolite laminae. Physica A 282: 123–136CrossRefGoogle Scholar
  15. Batchelor MT, Burne RV, Henry BI, Watt SD (2003) Mathematical and image analysis of stromatolite morphogenesis. Mathematical Geology 35: 789–803CrossRefGoogle Scholar
  16. Bell R (1870) Report on lakes Superior and Nipigon. Geological Survey of Canada, Reports of Progress 1866–1869, 313–364Google Scholar
  17. Bertrand-Sarfati J (1972) Stromatolites columnaires du Pré-cambrien supérieur du Sahara Nord-Occidental. CNRS, Paris, Centre de Recherches sur les Zones Arides, Géologie: 14, xxxvii+ 245 ppGoogle Scholar
  18. Bertrand-Sarfati J, Monty C (eds) (1994) Phanerozoic Stromatolites II. Kluwer, Dordrecht, 471 ppGoogle Scholar
  19. Bertrand-Sarfati J, Freytet P, Plaziat JC (1994) Microstructures in Tertiary nonmarine stromatolites (France). Comparison with Proterozoic. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic Stromatolites II. Kluwer, Dordrecht, pp 155–191CrossRefGoogle Scholar
  20. Black M (1933) The algal sedimentation of Andros Island Bahamas. Philosophical Transactions of the Royal Society (London) Series B: Biological Science 222: 165–192CrossRefGoogle Scholar
  21. Bloos G (1976) Untersuchungen über Bau und Entstehung der feinkörnigen Sandsteine des Schwarzen Jura (α) (Hettangium und tiefstes Sinemurium) im schwäbischen Sedimentationsbereich. Arbeiten aus dem Institut für Geologie und Paläontologie an der Universität Stuttgart 71: 1–277Google Scholar
  22. Brachert TC, Dullo W-C (1991) Laminar crusts and associated foreslope processes, Red Sea. Journal of Sedimentary Research 61: 354–363Google Scholar
  23. Bradley WH (1928) Algae reefs and oolites of the Green River Formation. US Geological Survey Professional Paper 154: 203–233Google Scholar
  24. Braga JC, Martín JM, Riding R (1995) Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, SE Spain. Palaios 10: 347–361CrossRefGoogle Scholar
  25. Brasier M, McLoughlin N, Green O, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Philosophical Transactions of the Royal Society (London) B Biological Sciences 361: 887–902CrossRefGoogle Scholar
  26. Browne KM, Golubic S, Seong-Joo L (2000) Shallow marine microbial carbonate deposits. In: Riding R, Awramik SM (eds) Microbial Sediments. Springer, Berlin, pp 233–249Google Scholar
  27. Bucher WH (1913) Über einige Fossilien und über Stromatolithbildung im Tertiär der bayerischen Rheinpfalz. München Geognostische Jahreshefte, Jahrgang 26: 76–102Google Scholar
  28. Bucher WH (1918) On oölites and spherulites. Journal of Geology 26: 593–609CrossRefGoogle Scholar
  29. Buick R (1992) The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255: 74–77CrossRefGoogle Scholar
  30. Buick R, Dunlop JSR, Groves DI (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa 5: 161–181CrossRefGoogle Scholar
  31. Burne RV, Moore L (1987) Microbialites; organosedimentary deposits of benthic microbial communities. Palaios 2: 241–254CrossRefGoogle Scholar
  32. Cabioch G, Camoin GF, Montaggioni LF (1999) Postglacial growth history of a French Polynesian barrier reef tract, Tahiti, central Pacific. Sedimentology 46: 985–1000CrossRefGoogle Scholar
  33. Cabioch G, Camoin G, Webb GE, Le Cornec F, Garcia Molina M, Pierre C, Joachimski MM (2006) Contribution of microbialites to the development of coral reefs during the last deglacial period: case study from Vanuatu (South-West Pacific). Sedimentary Geology 185: 297–318CrossRefGoogle Scholar
  34. Cameron BW, Cameron D, Jones JR (1985) Modern algal mats in intertidal and supratidal quartz sands, northeastern Massachusetts, U.S.A. In Curran HA (ed) Biogenic structures: their use in interpreting depositional environments. SEPM Special Publication 35: 211–224Google Scholar
  35. Camoin GF, Montaggioni LF (1994) High energy coralgal-stromatolite frameworks from Holocene reefs (Tahiti, French Polynesia). Sedimentology 41: 655–676CrossRefGoogle Scholar
  36. Camoin GF, Gautret P, Montaggioni LF, Cabioch G (1999) Nature and environmental significance of microbialites in Quaternary reefs: The Tahiti paradox. Sedimentary Geology 126: 271–304CrossRefGoogle Scholar
  37. Camoin G, Cabioch G, Eisenhauer A, Braga J-C, Hamelin B, Lericolais G (2006) Environmental significance of microbialites in reef environments during the last deglaciation. Sedimentary Geology 185: 277–295CrossRefGoogle Scholar
  38. Camoin GF, Iryu Y, McInroy DB, Expedition 310 Scientists (2007) Proceedings of the Integrated Ocean Drilling Program, volume 310, 83 pp. Washington, DC, 310, doi:10.2204/iodp.proc.310.2007Google Scholar
  39. Chafetz HS (1986) Marine peloids; a product of bacterially induced precipitation of calcite. Journal of Sedimentary Petrology 56: 812–817Google Scholar
  40. Cohen Y, Rosenberg E (eds) (1989) Microbial Mats; Physiological Ecology of Benthic Microbial Communities. American Society for Microbiology, Washington, DCGoogle Scholar
  41. Corsetti FA, Storrie-Lombardi MC (2003) Lossless compression of stromatolite images: a biogenicity index? Astrobiology 3: 649–655CrossRefGoogle Scholar
  42. Dabrio CJ, Esteban M, Martin JM (1981) The coral reef of Nijar, Messinian (uppermost Miocene), Almeria Province, S.E. Spain. Journal of Sedimentary Petrology 51: 521–539Google Scholar
  43. Davies G R (1970) Carbonate bank sedimentation, eastern. Shark Bay, Western Australia. American Association of Petroleum Geologists Memoirs 75: 85–168Google Scholar
  44. Dawson JW (1865) On the structure of certain organic remains in the Laurentian limestones of Canada. Quarterly Journal of the Geological Society London 21: 51–59CrossRefGoogle Scholar
  45. Dawson JW (1876) Notes on the occurrence of Eozoön canadense at Côte St. Pierre. Quarterly Journal of the Geological Society London 32: 66–75CrossRefGoogle Scholar
  46. Dawson W (1896) Note on Cryptozoon and other ancient fossils. The Canadian Record of Science 7: 203–219Google Scholar
  47. de Laubenfels MW (1955) Porifera. In: Moore RC (ed) Treatise on Invertebrate Paleontology, Part E, Archaeocyatha and Porifera. Geological Society of America and University of Kansas Press, Lawrence, pp E21–E112Google Scholar
  48. Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Continental Shelf Research 20: 1257–1273CrossRefGoogle Scholar
  49. Decho AW, Visscher PT, Reid RP (2005) Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeography, Palaeoclimatology, Palaeoecology 219: 71–86CrossRefGoogle Scholar
  50. Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biological Bulletin 204: 160–167CrossRefGoogle Scholar
  51. Dill RF, Shinn EA, Jones AT, Kelly K, Steinen RP (1986) Giant subtidal stromatolites forming in normal salinity waters. Nature 324: 55–58CrossRefGoogle Scholar
  52. Dill RF, Kendall CGStC, Shinn EA (1989) Giant subtidal stromatolites and related sedimentary features. 28th International Geological Congress, American Geophysical Union, Washington, DC, Field Trip Guidebook T373, 33 ppGoogle Scholar
  53. Dravis, JJ (1983) Hardened subtidal stromatolites, Bahamas. Science 219: 385–386CrossRefGoogle Scholar
  54. Dupraz C, Pattisina R, Verrecchia EP. (2006) Translation of energy into morphology: simulation of stromatolite morphospace using a stochastic model. Sedimentary Geology 185: 185–203CrossRefGoogle Scholar
  55. Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews 96: 141–162CrossRefGoogle Scholar
  56. Expedition 310 Scientists (2007) Maraa eastern transect: sites M0015–M0018. In: Camoin GF, Iryu Y, McInroy DB, Expedition 310 Scientists (eds). Proceedings of the IODP, 310: Washington, DC (Integrated Ocean Drilling Program Management International, Inc.), 83 pp. doi: 10.2204/iodp.proc.310.106.2007
  57. Feldmann M, McKenzie JA (1997) Messinian stromatolite-thrombolite associations, Santa Pola, SE Spain: an analogue for the Palaeozoic? Sedimentology 44: 893–914CrossRefGoogle Scholar
  58. Fenton CL (1943) Pre-Cambrian and early Paleozoic algae. American Midland Naturalist 30: 83–111CrossRefGoogle Scholar
  59. Fenton CL, Fenton MA (1936) Walcott’s ‘Pre-Cambrian Algonkian algal flora’ and associated animals. Geological Society of America Bulletin 47: 609–620Google Scholar
  60. Garrett P (1969) The geology and biology of large cavities in Bermuda reefs. In: Ginsburg RN, Garrett P (eds), Reports of research 1968 seminar on organism-sediment relationships. Bermuda Biological Field Station Research Special Publication 6: 77–88Google Scholar
  61. Garwood EJ (1913) On the important part played by calcareous algae at certain geological horizons, with special reference to the Palaeozoic rocks. Geological Magazine Decade 5, 10: 440–446, 490–498, 545–553Google Scholar
  62. Gebelein CD (1974) Biologic control of stromatolite microstructure: implications for pre-cambrian time stratigraphy. American Journal of Science 274: 575–598CrossRefGoogle Scholar
  63. Gerdes G, Krumbein WE (1994) Peritidal potential stromatolites – a synopsis. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic Stromatolites II. Kluwer, Dordrecht, pp 101–129CrossRefGoogle Scholar
  64. Gerdes G, Krumbein WE, Reineck H-E (1985) The depositional record of sandy, versicolored tidal flats (Mellum Island, southern North Sea). Journal of Sedimentary Petrology 55: 265–278Google Scholar
  65. Gerdes G, Claes M, Dunajtschik-Piewak K, Riege H, Krumbein WE, Reineck H-E (1993) Contribution of microbial mats to sedimentary surface structures. Facies 29: 61–74CrossRefGoogle Scholar
  66. Gerdes G, Krumbein WE, Noffke N (2000) Evaporite microbial sediments. In: Riding R, Awramik SM (eds) Microbial Sediments. Springer, Berlin, pp 196–208Google Scholar
  67. Ginsburg RN (1960) Ancient analogues of recent stromatolites. International Geological Congress, 21st, Copenhagen, part 22, 26–35Google Scholar
  68. Ginsburg RN (1991) Controversies about stromatolites: vices and virtues. In: Muller DW, McKenzie JA, Weissert H (eds), Controversies in Modern Geology; Evolution of Geological Theories in Sedimentology, Earth History and Tectonics, Academic Press, London, pp 25–36Google Scholar
  69. Ginsburg RN, Planavsky NJ (2008) Diversity of Bahamian stromatolite substrates. In: Dilek Y, Furnes H, Muehlenbachs K (eds) Links between geological processes, microbial activities and evolution of life. Modern Approaches in Solid Earth Sciences 4: 177–195Google Scholar
  70. Ginsburg RN, Isham LB, Bein SJ, Kuperberg J (1954) Laminated Algal Sediments of South Florida and their Recognition in the Fossil Record. Marine Laboratory, University of Miami, Coral Gables, Florida, Unpublished Report, 54–21, 33 ppGoogle Scholar
  71. Glaessner MF (1962) Pre-cambrian fossils. Biological Reviews 37: 467–493Google Scholar
  72. Goldring W (1938) Algal barrier reefs in the Lower Ozarkian of New York with a chapter on the importance of coralline algae as reef builders through the ages. Bulletin of the New York State Museum 315: 5–75Google Scholar
  73. Golubic S (1976) Organisms that build stromatolites. In: Walter MR (ed) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, pp 113–140CrossRefGoogle Scholar
  74. Grotzinger JP (1986a) Cyclicity and paleoenvironmental dynamics, Rocknest platform, northwest Canada. Geological Society of America Bulletin 97: 1208–1231CrossRefGoogle Scholar
  75. Grotzinger JP (1986b) Evolution of Early Proterozoic passive-margin carbonate platform, rocknest formation, wopmay orogen, Northwest Territories, Canada. Journal of Sedimentary Petrology 56: 831–847Google Scholar
  76. Grotzinger JP (1989a) Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. In: Crevello PD, Wilson JL, Sarg JF, Read JF (eds) Controls on carbonate platform and basin development. SEPM Special Publication Number 44: 79–106Google Scholar
  77. Grotzinger JP (1989b) Introduction to Precambrian reefs. In: Geldsetzer HHJ, James NP, Tebbutt GE (eds) Reefs, Canada and adjacent areas. Canadian Society of Petroleum Geologists Memoir 13: 9–12Google Scholar
  78. Grotzinger JP (1990) Geochemical model for Proterozoic stromatolite decline. American Journal of Science 290: 80–103Google Scholar
  79. Grotzinger JP, James NP (2000a) Precambrian carbonates: evolution of understanding. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving Precambrian world. SEPM Special Publication Number 67: 3–20Google Scholar
  80. Grotzinger JP, James NP (eds) (2000b) Carbonate sedimentation and diagenesis in the evolving Precambrian World. SEPM Special Publication Number 67: 364Google Scholar
  81. Grotzinger JP, Kasting JF (1993) New constraints on Precambrian ocean composition. Journal of Geology 101: 235–243CrossRefGoogle Scholar
  82. Grotzinger JP, Knoll AH (1995) Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios 10: 578–596CrossRefGoogle Scholar
  83. Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Reviews of Earth and Planetary Sciences 27: 313–358CrossRefGoogle Scholar
  84. Grotzinger JP, Read JF (1983) Evidence for primary aragonite precipitation, lower Proterozoic (1.9-Ga) Rocknest Dolomite, Wopmay Orogen, Northwest Canada. Geology 11: 710–713CrossRefGoogle Scholar
  85. Grotzinger JP, Rothman DR (1996) An abiotic model for stromatolite morphogenesis. Nature 383: 423–425CrossRefGoogle Scholar
  86. Gürich G (1906) Les spongiostromides du Viséen de la Province de Namur. Musée Royal d'Histoire Naturelle de Belgique, Mémoires 3(4): 1–55Google Scholar
  87. Hadding A (1927) The pre-Quaternary sedimentary rocks of Sweden. I. A survey of the pre-Quaternary rocks of Sweden. II. The Paleozoic and. Mesozoic conglomerates of Sweden. Lunds Universitets Årsskrift, Nya Förhandlingar (2) 23: 41–171Google Scholar
  88. Hagadorn JW, Bottjer DJ (1997) Wrinkle structures: microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition. Geology 25: 1047–1050CrossRefGoogle Scholar
  89. Hall J (1883) Cryptozoön, n.g.; Cryptozoön proliferum, nsp. New York State Museum of Natural History, 36th Annual Report of the Trustees, plate6Google Scholar
  90. Häntzschel W, Reineck H-E (1968) Fazies-Untersuchungen im Hettangium von Helmstedt (Niedersachsen). Mitteilungen des Geologischen Staatsinstuts Hamburg 37: 5–39Google Scholar
  91. Heim A (1916) Monographie der Churfirsten-Mattstock-Gruppe, III. Stratigraphie der Unteren Kreide und des Jura. Zur Lithogenesis. Beiträge zur geologischen Karte der Schweiz NF 20: 369–662Google Scholar
  92. Heindel K, Birgel D, Peckmann J, Kuhnert H, Westphal H (2009) Sulfate-reducing bacteria as major players in the formation of reef-microbialites during the last sea-level rise (Tahiti, IODP 310). Geochimica et Cosmochimica Acta 73 (13), Goldschmidt Conference Abstracts, p A514Google Scholar
  93. Hoffman PF (1973) Recent and ancient algal stromatolites: seventy years of pedagogic cross-pollination. In: Ginsburg RN (ed) Evolving Concepts in Sedimentology. The Johns Hopkins University Studies in Geology 21. The Johns Hopkins University Press, Baltimore, London, pp 178–191Google Scholar
  94. Hoffman PF (1975) Shoaling-upward shale-to-dolomite cycles in the Rocknest Formation (lower Proterozoic), Northwest Territories, Canada. In: Ginsburg RN (ed) Tidal Deposits. Springer, Berlin, pp 257–265CrossRefGoogle Scholar
  95. Hoffman PF (1989) Pethei reef complex (1.9 Ga), Great Slave Lake, N.W.T. In: Geldsetzer HHJ, James NP, Tebbutt GE (eds), Reefs, Canada and adjacent area. Canadian Society of Petroleum Geologists, Memoir 13: 38–48Google Scholar
  96. Hofmann HJ (1969) Attributes of stromatolites. Geological Survey of Canada Paper 69-39: 58 ppGoogle Scholar
  97. Hofmann HJ (1971) Precambrian fossils, pseudofossils, and problematica in Canada. Geological Survey of Canada Bulletin 189: 146Google Scholar
  98. Hofmann HJ (1973) Stromatolites: characteristics and utility. Earth-Science Reviews 9: 339–373CrossRefGoogle Scholar
  99. Hofmann HJ (2000) Archean stromatolites as microbial archives. In: Riding RE, Awramik SM (eds) Microbial Sediments. Springer, Berlin, pp 315–327Google Scholar
  100. Hofmann HJ, Jackson JD (1987) Proterozoic ministromatolites with radial fibrous fabric. Sedimentology 34: 963–971CrossRefGoogle Scholar
  101. Hofmann HJ, Grey K, Hickman AH, Thorpe RI (1999) Origin of 3.45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geological Society of America Bulletin 111: 1256–1262CrossRefGoogle Scholar
  102. Holtedahl O (1921) Occurrence of structures like Walcott’s Algonkian algae in the Permian of England. American Journal of Science 1: 195–206CrossRefGoogle Scholar
  103. Hornemann JW (ed) (1813) Flora Danica, vol. 9, fasc. 25. Hof-Bogtrykker, Nicolaus Miller, CopenhagenGoogle Scholar
  104. Horodyski RJ (1977) Lyngbya mats at Laguna Mormona, Baja California, Mexico; comparison with Proterozoic stromatolites. Journal of Sedimentary Petrology 47: 1305–1320Google Scholar
  105. Horodyski RJ (1982) Impressions of algal mats from the Middle Proterozoic Belt Supergroup, northwestern Montana, USA. Sedimentology 29: 285–289CrossRefGoogle Scholar
  106. Horodyski RJ, Bloeser B (1977) Laminated algal mats from a coastal lagoon, Laguna Mormona, Baja California, Mexico. Journal of Sedimentary Petrology 47: 680–696Google Scholar
  107. Horodyski RJ, Vonder Haar SP (1975) Recent calcareous stromatolites from Laguna Mormona (Baja California), Mexico. Journal of Sedimentary Petrology 45: 894–906Google Scholar
  108. Jackson MJ (1989) Lower Proterozoic Cowles Lake foredeep reef, N.W.T., Canada. In: Geldsetzer HHJ, James NP, Tebbutt GE (eds), Reefs, Canada and adjacent area. Canadian Society of Petroleum Geologists, Memoir 13: 64–71Google Scholar
  109. James NP, Ginsburg RN (1979) Petrography of limestones from the wall and fore-reef. In: James NP, Ginsburg RN (eds) The Seaward Margin of Belize Barrier and Atoll Reefs. IAS Special Publication Number 3. Blackwell, Oxford, pp 111–152Google Scholar
  110. James NP, Ginsburg RN, Marszalek DS, Choquette PW (1976) Facies and fabric specificity of early subsea cements in shallow Belize (British Honduras) reefs. Journal of Sedimentary Petrology 46: 523–544Google Scholar
  111. James NP, Narbonne GM, Sherman AG (1998) Molartooth carbonates: shallow subtidal facies of the mid- to late Proterozoic. Journal of Sedimentary Research 68(5): 716–722CrossRefGoogle Scholar
  112. Javor BJ, Castenholz RW (1981) Laminated microbial mats, Laguna Guerrero Negro, Mexico. Geomicrobiology Journal 2: 237–273CrossRefGoogle Scholar
  113. Johnson JH (1946) Lime-secreting algae from the Pennsylvanian and Permian of Kansas. Geological Society of America Bulletin 57: 1087–1120CrossRefGoogle Scholar
  114. Jolliffe AW (1955) Geology and iron ores of Steep Rock Lake (Ontario). Economic Geology 50: 373–398CrossRefGoogle Scholar
  115. Jones B, Hunter IG (1991) Corals to rhodolites to microbialites; a community replacement sequence indicative of regressive conditions. Palaios 6: 54–66CrossRefGoogle Scholar
  116. Jørgensen BB, Cohen Y (1977) Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats. Limnology and Oceanography 22: 657–666CrossRefGoogle Scholar
  117. Kah LC, Knoll AH (1996) Microbenthic distribution of Proterozoic tidal flats: environmental and taphonomic considerations. Geology 24: 79–82CrossRefGoogle Scholar
  118. Kalkowsky E (1908) Oölith und Stromatolith im norddeutschen Buntsandstein. Zeitschrift der Deutschen geologischen Gesellschaft 60: 68–125, pls 4–11Google Scholar
  119. Kendall CGStC, Skipwith PAd’E (1968) Recent algal mats of a Persian Gulf lagoon. Journal of Sedimentary Petrology 38: 1040–1058Google Scholar
  120. Kerans C (1982) Sedimentology and stratigraphy of the Dismal Lakes Group, Proterozoic, Northwest Territories. PhD thesis, Carleton University, Ottawa, Canada. UnpublishedGoogle Scholar
  121. Knoll AH, Golubic S (1979) Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Research 10: 115–151CrossRefGoogle Scholar
  122. Knoll AH, Semikhatov MA (1998) The genesis and time distribution of two distinctive Proterozoic stromatolite microstructures. Palaios 13: 408–422CrossRefGoogle Scholar
  123. Komar VA, Raaben ME, Semikhatov MA (1965) Conophyton in the Riphean of the USSR and their stratigraphic importance. Trudy Geological Institute, Leningrad 131: 72 pp, in RussianGoogle Scholar
  124. Kremer B, Kazmierczak J, Stal JL (2008) Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea. Geobiology 6: 46–56Google Scholar
  125. Krumbein WE, Cohen Y, Shilo M (1977) Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnology and Oceanography 22: 635–656CrossRefGoogle Scholar
  126. Land LS (1971) Submarine lithification of Jamaican reefs. In: Bricker OP (ed) Carbonate Cements. Johns Hopkins University Press, Baltimore, pp 59–60Google Scholar
  127. Land LS, Goreau TF (1970) Submarine lithification of Jamaican reefs. Journal of Sedimentary Petrology 40: 457–462Google Scholar
  128. Land LS, Moore CH (1980) Lithification, micritization and syndepositional diagenesis of biolithites on the Jamaican island slope. Journal of Sedimentary Petrology 50: 357–369Google Scholar
  129. Lawson AC (1912) The geology of Steep Rock Lake, Ontario. Geological Survey of Canada Memoir 28: 7–15Google Scholar
  130. Lepot K, Benzerara K, Brown GE, Philippot P (2008) Microbially influenced formation of 2,724-million-year-old stromatolites. Nature Geoscience 1: 118–121CrossRefGoogle Scholar
  131. Lighty RG (1985) Preservation of internal reef porosity and diagenetic sealing of submerged early Holocene barrier reef, southeast Florida shelf. In: Schneidermann N, Harris PM (eds) Carbonate cements. SEPM Special Publication 36: 123–152Google Scholar
  132. Linck G (1903) Die Bildung der Oolithe und Rogensteine. Neues Jahrbuch für Mineralogie, Geologie, und Paläontologie 16: 495–513Google Scholar
  133. Lindemann RH, Yochelson EL (2005) C.D. Walcott and the Hoyt Limestone: an historic encounter at Saratoga Springs, New York. Northeastern Geology & Environmental Sciences 27: 177–186Google Scholar
  134. Logan BW (1961) Cryptozoon and associated stromatolites from the Recent, Shark Bay, Western Australia. Journal of Geology 69: 517–533CrossRefGoogle Scholar
  135. Logan BW, Rezak R, Ginsburg RN (1964) Classification and environmental significance of algal stromatolites. Journal of Geology 72: 68–83CrossRefGoogle Scholar
  136. Logan BW, Hoffman P, Gebelein CD (1974) Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. In: Logan BW, Read JF, Hagan GM, Hoffman P, Brown RG, Woods PJ, Gebelein CD (eds) Evolution and diagenesis of quaternary carbonate sequences, Shark Bay, Western Australia. American Association of Petroleum Gelogists Memoir 22: 140–191Google Scholar
  137. Lowe DR (1980) Stromatolites 3,400–3,500 Myr old from the Archean of Western Australia. Nature 284: 441–443CrossRefGoogle Scholar
  138. Lowe DR (1983) Restricted shallow-water sedimentation of early Archean stromatolitic and avaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambrian Research 19: 239–283CrossRefGoogle Scholar
  139. Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22: 387–390CrossRefGoogle Scholar
  140. Macintyre IG (1977) Distribution of submarine cements in a modern Caribbean fringing reef, Galeta Point, Panama. Journal of Sedimentary Petrology 47: 503–516Google Scholar
  141. Macintyre IG (1984) Extensive submarine lithification in a cave in the Belize Barrier Reef Platform. Journal of Sedimentary Petrology 54: 221–235Google Scholar
  142. Macintyre IG (1985) Submarine cements – the peloidal question. In: Schneidermann N, Harris PM (eds) Carbonate cements. SEPM Special Publication 36: 109–116. Tulsa, Oklahoma, USAGoogle Scholar
  143. Macintyre IG, Marshall JF (1988) Submarine lithification in coral reefs: some facts and misconceptions. Proceedings 6th International Coral Reef Symposium, Townsville, Australia, 8–12 August 1988, 1: 263–272Google Scholar
  144. Macintyre IG, Mountjoy EW, d’Anglejan BF (1968) An occurrence of submarine cementation of carbonate sediments off the west coast of Barbados, W.I. Journal of Sedimentary Petrology 38: 660–664Google Scholar
  145. Maliva RG, Missima TM, Leo CL, Statom RA, Dupraz C, Lynn M, Dickson JAD (2000) Unusual calcite stromatolites and pisoids from a landfill leachate collection system. Geology 28: 931–934CrossRefGoogle Scholar
  146. Malone MJ, Slowey NC, Henderson GM (2001) Early diagenesis of shallow-water periplatform carbonate sediments, leeward margin, Great Bahama Bank (Ocean Drilling Program Leg 166). Geological Society of America Bulletin 113: 881–894CrossRefGoogle Scholar
  147. Marshall JF (1983) Submarine cementation in a high-energy platform reef; One Tree Reef, southern Great Barrier Reef. Journal of Sedimentary Petrology 53: 1133–1149Google Scholar
  148. Marshall, J.F. 1986. Regional distribution of submarine cements within an epicontinental reef system: central Great Barrier Reef, Australia. In: Schroeder JH, Purser BH (eds), Reef Diagenesis. Springer, Berlin, pp 8–26CrossRefGoogle Scholar
  149. Marshall JF, Davies PJ (1981) Submarine lithification on windward reef slopes; Capricorn-Bunker Group, southern Great Barrier Reef. Journal of Sedimentary Petrology 51: 953–960Google Scholar
  150. Martindale W (1992) Calcified epibionts as palaeoecological tools: examples from the Recent and Pleistocene reefs of Barbados. Coral Reefs 11: 167–177CrossRefGoogle Scholar
  151. Martinsson A (1965) Aspects of a Middle Cambrian thanatotope on Öland. Geologiska Föreningens i Stockholm Förhandlingar 87:181–230CrossRefGoogle Scholar
  152. Matthew GF (1890a) On the existence of organisms in the pre-Cambrian rocks. Natural History Society New Brunswick, Bulletin 2(9): 28–33Google Scholar
  153. Matthew GF (1890b) Eozoön and other low organisms in Laurentian rocks at St. John. Natural History Society New Brunswick, Bulletin 2(9): 36–41, 67Google Scholar
  154. Mawson D (1929) Some South Australian algal limestones in process of formation. Quarterly Journal of the Geological Society, London 85: 613–620CrossRefGoogle Scholar
  155. McLoughlin N, Wilson LA, Brasier MD (2008) Growth of synthetic stromatolites and wrinkle structures in the absence of microbes – implications for the early fossil record. Geobiology 6: 95–105CrossRefGoogle Scholar
  156. Montaggioni LF, Camoin GF (1993) Stromatolites associated with coralgal communities in Holocene high-energy reefs. Geology 21: 149–152CrossRefGoogle Scholar
  157. Monty C (1965) Recent algal stromatolites in the Windward lagoon, Andros Island, Bahamas. Annales de la Société Géologique de Belgique 88: 269–276Google Scholar
  158. Monty C (1967) Distribution and structure of recent stromatolitic algal mats, eastern Andros Island, Bahamas. Société Géologique de Belgique, Annales 90: 55–99Google Scholar
  159. Monty C (1972) Recent algal stromatolitic deposits, Andros Island Bahamas. Preliminary report. Geologische Rundschau 61: 742–783CrossRefGoogle Scholar
  160. Monty C (1976) The origin and development of cryptalgal fabrics. In: Walter MR (ed) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, pp 193–249CrossRefGoogle Scholar
  161. Monty C (1977) Evolving concepts on the nature and the ecological significance of stromatolites. In: Flügel E (ed) Fossil Algae, Recent Results and Developments. Springer, Berlin, pp 15–35CrossRefGoogle Scholar
  162. Monty C (ed) (1981) Phanerozoic Stromatolites. Springer-Verlag, Berlin, 249 ppGoogle Scholar
  163. Morse JW, Mucci A (1984) Composition of carbonate overgrowths produced on Iceland spar calcite crystals buried in Bahamian carbonate-rich sediments. Sedimentary Geology 40: 287–291CrossRefGoogle Scholar
  164. Naumann CF (1862) Lehrbuch der Geognosie, Band 2. Engelmann, Leipzig, 1092 ppGoogle Scholar
  165. Nicholson JAM, Stolz JF, Pierson BK (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiology Letters 45: 343–364CrossRefGoogle Scholar
  166. Noffke N, Gerdes G, Klenke T, Krumbein, WE (1996) Microbially induced sedimentary structures – examples from modern sediments of siliciclastic tidal flats. Zentralblatt Geologie Paläontologie I (1995) 1/2: 307–316Google Scholar
  167. Noffke N, Gerdes G, Klenke T, Krumbein WE (2001) Microbially induced sedimentary structures: a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research 71: 649–656CrossRefGoogle Scholar
  168. Noffke N, Hazen R, Nhleko N (2003) Earth’s earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South Africa). Geology 31: 673–676CrossRefGoogle Scholar
  169. Noffke N, Eriksson KA, Hazen RM, Simpson EL (2006) A new window into Early Archean life: microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34: 253–256CrossRefGoogle Scholar
  170. Noffke N, Beukes N, Bower D, Hazen RM, Swift DJP (2008) An actualistic perspective into Archean worlds – (cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa. Geobiology 6: 5–20CrossRefGoogle Scholar
  171. O’Brien C F (1970) Eozoön canadense ‘The dawn animal of Canada’. Isis 61: 206–223CrossRefGoogle Scholar
  172. Ørsted AS (1842) Beretning om en Excursion til Trindelen, en alluvialdannelse i Odensefjord. Krøyer, Naturhistorisk Tidsskrift 3: 552–569Google Scholar
  173. Paul J, Peryt TM (2000) Kalkowsky’s stromatolites revisited (Lower Triassic Buntsandstein, Harz Mountains, Germany). Palaeogeography, Palaeoclimatology, Palaeoecology 161: 435–458CrossRefGoogle Scholar
  174. Pedley HM (1979) Miocene bioherms and associated structures in the Upper Coralline limestone of the Maltese Islands: their lithification and palaeoenvironment. Sedimentology 26: 577–591CrossRefGoogle Scholar
  175. Pentecost A (2005) Travertine. Springer, Berlin, 445 ppGoogle Scholar
  176. Perry RS, McLoughlin N, Lynne BY, Sephton MA, Oliver JD, Perry CC, Campbell K, Engel H, Farmer JD, Brasier MD, Staley JT (2007) Defining biominerals and organominerals: direct and indirect indicators of life. Sedimentary Geology 201: 157–179CrossRefGoogle Scholar
  177. Petrov PYu, Semikhatov MA (2001) Sequence organization and growth patterns of late Mesoproterozoic stromatolite reefs: an example from the Burovaya Formation, Turukhansk Uplift, Siberia. Precambrian Research 111: 257–281CrossRefGoogle Scholar
  178. Pia J (1927) Thallophyta. In: Hirmer M (ed) Handbuch der Paläobotanik 1. Oldenburg, Munich, pp 31–136Google Scholar
  179. Pigott JD, Land LS (1986) Interstitial water chemistry of Jamaican reef sediment: sulfate reduction and submarine cementation. Marine Chemistry 19: 355–378CrossRefGoogle Scholar
  180. Playford PE, Cockbain AE (1976) Modern algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay, Western Australia. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 389–411CrossRefGoogle Scholar
  181. Pope MC, Grotzinger JP (2000) Controls on fabric development and morphology of tufas and stromatolites, uppermost Pethei Group (1.8 Ga), Great Slave Lake, northwest Canada. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving Precambrian world. SEPM Special Publication Number 67: 103–121Google Scholar
  182. Pope MC, Grotzinger JP, Schreiber BC (2000) Evaporitic subtidal stromatolites produced by in situ precipitation: textures, facies associations, and temporal significance. Journal of Sedimentary Research 70: 1139–1151CrossRefGoogle Scholar
  183. Por FD (1967) Solar Lake on the shores of the Red Sea. Nature 218: 860–861CrossRefGoogle Scholar
  184. Porada H, Bouougri EH (2007) Wrinkle structures – a critical review. Earth Science Reviews 81: 199–215CrossRefGoogle Scholar
  185. Porada H, Ghergut J, Bouougri EH (2008) Kinneyia-type wrinkle structures – critical review and model of formation. Palaios 23: 65–77CrossRefGoogle Scholar
  186. Read JF (1976) Calcretes and their distinction from stromatolites. In: Walter MR (ed), Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, pp 55–71CrossRefGoogle Scholar
  187. Reid RP, Macintyre IG, Steneck RS, Browne KM, Miller TE (1995) Stromatolites in the Exuma Cays, Bahamas: uncommonly common. Facies 33: 1–18CrossRefGoogle Scholar
  188. Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406: 989–992CrossRefGoogle Scholar
  189. Reis OM (1908) Kalkowsky: Ueber Oölith und Stromatolith im norddeutschen Buntsandstein. Neues Jahrbuch fiir Mineralogie, Geologie und Paläontologie 2: 114–138Google Scholar
  190. Reitner J (1993) Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia). Formation and concepts. Facies 29: 3–39CrossRefGoogle Scholar
  191. Reitner J, Gautret P, Marin F, Neuweiler F (1995) Automicrites in a modern marine microbialite. Formation model via organic matrices (Lizard Island, Great Barrier Reef, Australia). Bulletin de l’Institut d’Océanographique de Monaco Special Number 14: 237–263Google Scholar
  192. Reitner J, Thiel V, Zankl H, Michaelis W, Wörheide G, Gautret P (2000) Organic and biogeochemical patterns in cryptic microbialites. In: Riding RE, Awramik SM (eds) Microbial Sediments, Springer, Berlin, pp 149–160Google Scholar
  193. Revsbech NP, Jørgensen BB, Blackburn TH, Cohen Y (1983) Microelectrode studies of photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnology and Oceanography 28: 1062–1074CrossRefGoogle Scholar
  194. Riding R (1977) Skeletal stromatolites. In: Flügel E (ed) Fossil Algae, Recent Results and Developments. Springer, Berlin, pp 57–60CrossRefGoogle Scholar
  195. Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous Algae and Stromatolites. Springer-Verlag, Berlin, pp 21–51CrossRefGoogle Scholar
  196. Riding R (1999) The term stromatolite: towards an essential definition. Lethaia 32: 321–330CrossRefGoogle Scholar
  197. Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47(Suppl 1): 179–214CrossRefGoogle Scholar
  198. Riding R (2008) Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geologia Croatica 61(2–3): 73–103Google Scholar
  199. Riding R, Awramik SM (eds) (2000) Microbial Sediments. Springer, Berlin, 331 ppGoogle Scholar
  200. Riding R, Awramik SM, Winsborough BM, Griffin KM, Dill RF (1991a) Bahamian giant stromatolites: microbial composition of surface mats. Geological Magazine 128: 227–234CrossRefGoogle Scholar
  201. Riding R, Martín JM, Braga JC (1991b) Coral stromatolite reef framework, Upper Miocene, Almería, Spain. Sedimentology 38: 799–818CrossRefGoogle Scholar
  202. Roddy HJ (1915) Concretions in streams formed by the agency of blue-green algae and related plants. Proceedings American Philosophical Society 54: 246–258Google Scholar
  203. Rothpletz A (1892) Über die Bildung der Oolithe. Botanisches Centralblatt 51: 265–268Google Scholar
  204. Sami TT, James NP (1994) Peritidal carbonate platform growth and cyclicity in an early Proterozoic foreland basin, upper Pethei Group, northwest Canada. Journal of Sedimentary Research B64: 111–131Google Scholar
  205. Sami TT, James NP (1996) Synsedimentary cements as Paleoproterozoic platform building blocks, Pethei Group, northwestern Canada. Journal of Sedimentary Research 66: 209–222Google Scholar
  206. Schieber J (1986) The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow Proterozoic basins. Sedimentology 33: 521–536CrossRefGoogle Scholar
  207. Schieber J (1998) Possible indicators of microbial mat deposits in shales and sandstones: examples from the mid-Proterozoic Belt Supergroup, Montana, U.S.A. Sedimentary Geology 120: 105–124CrossRefGoogle Scholar
  208. Schopf JW (1968) Microflora of the Bitter Springs Formation, Late Precambrian, central Australia. Journal of Paleontology 42: 651–688Google Scholar
  209. Schopf JW (1999) Cradle of Life: The Discovery of Earth’s Earliest Fossils. Princeton University Press, Princton, New Jersey, USA, 336 ppGoogle Scholar
  210. Schulz E (1936) Das Farbstreifen-Sandwatt und seine Fauna, eine ökologische biozönotische Untersuchung an der Nordsee. Kieler Meeresforschung 1: 359–378Google Scholar
  211. Sedgwick A (1829) On the geological relations and internal structure of the Magnesian Limestone, and the lower portions of the New Red Sandstone Series in their range through Nottinghamshire, Derbyshire, Yorkshire, and Durham, to the southern extremity of Northumberland. Transactions of the Geological Society of London, Second Series 3: 37–124CrossRefGoogle Scholar
  212. Seilacher A (1982) Distinctive features of sandy tempestites. In: Einsele G, Seilacher A (eds) Cyclic and Event Stratification. Springer, Berlin, pp 333–349CrossRefGoogle Scholar
  213. Semikhatov MA, Gebelein CD, Cloud P, Awramik SM, Benmore WC (1979) Stromatolite morphogenesis – progress and problems. Canadian Journal of Earth Science 16: 992–1015CrossRefGoogle Scholar
  214. Seward AC (1931) Plant Life Through the Ages. Cambridge University Press, Cambridge, 601 ppGoogle Scholar
  215. Sherman CE, Fletcher CH, Rubin KH (1999) Marine and meteoric diagenesis of Pleistocene carbonates from a nearshore submarine terrace, Oahu, Hawaii. Journal of Sedimentary Research 69: 1083–1097CrossRefGoogle Scholar
  216. Stal LJ (2000) Cyanobacterial mats and stromatolites. In: Whitton BA, Potts M (eds) The Ecology of Cyanobacteria. Their Diversity in Time and Space. Kluwer, Dordrecht, The Netherlands, pp 61–120Google Scholar
  217. Steele JH (1825) A description of the Oolitic Formation lately discovered in the county of Saratoga, and state of New-York. American Journal of Science 9: 16–19, part of pl. 2Google Scholar
  218. Storrie-Lombardi MC, Corsetti FA, Grigolini P, Ignaccolo M, Allegrini P, Galatolo S, Tinetti G (2004) Complexity analysis to explore the structure of ancient stromatolites. Chaos, Solitons and Fractals 20: 139–144CrossRefGoogle Scholar
  219. Sumner DY, Grotzinger JP (2000) Late Archean aragonite precipitation: petrography, facies associations, and environmental significance. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving Precambrian world. SEPM Special Publication Number 67: 123–144Google Scholar
  220. Sumner DY, Grotzinger JP (2004) Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani platform, South Africa. Sedimentology 51: 1–27CrossRefGoogle Scholar
  221. Thrailkill J (1976) Speleothems. In: Walter MR (ed) Stromatolites, Developments in Sedimentology 20. Elsevier, Amsterdam, pp 73–86CrossRefGoogle Scholar
  222. Turner EC, Narbonne GM, James NP (2000) Framework composition of early Neoproterozoic calcimicrobial reefs and associated microbialites, Mackenzie Mountains, N.W.T., Canada. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving Precambrian world. SEPM Special Publication Number 67: 179–205Google Scholar
  223. Tyler SA, Barghoorn ES (1954) Occurrence of structurally preserved plants in Pre-Cambrian rocks of the Canadian Shield. Science 119: 606–608CrossRefGoogle Scholar
  224. van Gemerden H (1993) Microbial mats: a joint venture. Marine Geology 113: 3–25CrossRefGoogle Scholar
  225. Vidal G (1972) Algal stromatolites from the Late Precambrian of Sweden. Lethaia 5: 353–367CrossRefGoogle Scholar
  226. Visscher PT, Reid RP, Bebout BM (2000) Microscale observation of sulphate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28: 919–922CrossRefGoogle Scholar
  227. Vologdin AG (1962) The Oldest Algae of the USSR. Academy of Sciences of the USSR, Moscow, 657 pp, in RussianGoogle Scholar
  228. Walcott CD (1895) Algonkian rocks of the Grand Canyon. Journal of Geology 3: 312–330CrossRefGoogle Scholar
  229. Walcott CD (1906) Algonkian formations of northwestern Montana. Geological Society of America Bulletin 17: 1–28Google Scholar
  230. Walcott CD (1912) Notes on fossils from limestone of Steeprock series, Ontario. Geological Survey Canada Memoir 28: 16–23Google Scholar
  231. Walcott CD (1914) Cambrian geology and paleontology III: Precambrian Algonkian algal flora. Smithsonian Miscellaneous Collection 64: 77–156Google Scholar
  232. Walter MR (1972) Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian. Special Papers in Palaeontology 11: 190Google Scholar
  233. Walter MR (ed) (1976a) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, 790 ppGoogle Scholar
  234. Walter MR (1976b) Introduction. In: Walter MR (ed) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, pp 1–3CrossRefGoogle Scholar
  235. Walter MR (1976c) Geyserites of Yellowstone National Park: an example of abiogenic “stromatolites”. In: Walter MR (ed) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, pp 87–112CrossRefGoogle Scholar
  236. Walter MR, Golubic S, Preiss WV (1973) Recent stromatolites from hydromagnesite and aragonite depositing lakes near the Coorong Lagoon, South Australia. Journal of Sedimentary Petrology 43: 1021–1030Google Scholar
  237. Walter MR, Bauld J, Brock TD (1976) Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone National Park. In M.R. Walter (ed) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, pp 273–310CrossRefGoogle Scholar
  238. Walter MR, Buick R,Dunlop JSR (1980) Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284: 443–445CrossRefGoogle Scholar
  239. Webb GE, Baker JC, Jell JS (1998) Inferred syngenetic textural evolution in Holocene cryptic reefal microbialites, Heron Reef, Great Barrier Reef, Australia. Geology 26: 355–358CrossRefGoogle Scholar
  240. Whittle GL, Kendall CGStC, Dill RF, Rouch L (1993) Carbonate cement fabrics displayed: a traverse across the margin of the Bahamas platform near Lee Stocking Island in the Exuma Cays. Marine Geology 110: 213–243CrossRefGoogle Scholar
  241. Wilks ME, Nisbet EG (1985) Archaean stromatolites from the Steep Rock Group, northwestern Ontario, Canada. Canadian Journal of Earth Sciences 22: 792–799CrossRefGoogle Scholar
  242. Wiman C (1915) Om Visingsö -kalkstenen vid Gränna. Geol Foren i Stockholm Förh 37: 367–375CrossRefGoogle Scholar
  243. Zankl H (1993) The origin of high-Mg-calcite microbialites in cryptic habitats of Caribbean coral reefs – their dependence on light and turbulence. Facies 29: 55–60CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesUniversity of TennesseeKnoxvilleUSA

Personalised recommendations