Token Traversal Strategies of a Distributed Spanning Forest Algorithm in Mobile Ad Hoc - Delay Tolerant Networks

  • Apivadee Piyatumrong
  • Patricia Ruiz
  • Pascal Bouvry
  • Frederic Guinand
  • Kittichai Lavangnananda
Part of the Communications in Computer and Information Science book series (CCIS, volume 55)

Abstract

This paper presents three distributed and decentralized strategies used for token traversal in spanning forest over Mobile Ad Hoc Delay Tolerant Networks. Such networks are characterized by behaviors like disappearance of mobile devices, connection disruptions, network partitioning, etc. Techniques based on tree topologies are well known for increasing the efficiency of network protocols and/or applications, such as Dynamicity Aware - Graph Relabeling System (DA-GRS). One of the main features of these tree based topologies is the existence of a token traversing in every tree. The use of tokens enables the creation and maintenance of spanning trees in dynamic environments. Subsequently, managing tree-based backbones relies heavily on the token behavior. An efficient and optimal token traversal can highly impact the design of the tree and its usage. In this article, we present a comparison of three distributed and decentralized techniques available for token management, which are Randomness, TABU and Depth First Search.

Keywords

Token traversal spanning tree distributed system delay tolerant networks Depth First Search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    John, E.C.R., McQuillan, M., Richer, I.: The new routing algorithm for the arpanet. IEEE Transactions on Communications COM-28(5), 711–719 (1980)Google Scholar
  2. 2.
    IEEE standard 802.1d-2004: IEEE standard for local and metropolitan area networks: Media access control (mac) brideges (June 2004)Google Scholar
  3. 3.
    Daly, E.M., Haahr, M.: Social network analysis for routing in disconnected delay-tolerant manets. In: MobiHoc 2007: Proceedings of the 8th ACM international symposium on Mobile ad hoc networking and computing, pp. 32–40. ACM, New York (2007)CrossRefGoogle Scholar
  4. 4.
    Su, J., Goel, A., de Lara, E.: An empirical evaluation of the student-net delay tolerant network. Annual International Conference on Mobile and Ubiquitous Systems, 1–10 (2006)Google Scholar
  5. 5.
    Ruiz, P., Dorronsoro, B., Khadraoui, D., Bouvry, P.: BODYF–A Parameterless Broadcasting Protocol Over Dynamic Forest. In: Workshop on Optimization Issues in Grid and Parallel Computing Environments, part of the High Performance Computing and Simulation Conference (HPCS), pp. 297–303 (2008)Google Scholar
  6. 6.
    Malpani, N., Chen, Y., Welch, J.L.: Distributed token circulation in mobile ad hoc networks. IEEE Transactions on Mobile Computing 4(2), 154–165 (2005)CrossRefGoogle Scholar
  7. 7.
    Pigné, Y.: Modélisation et traitement décentralisé des graphes dynamiques - application aux réseaux mobiles ad hoc. Ph.D. dissertation, L’Université du Harve (December 2008)Google Scholar
  8. 8.
    Casteigts, A.: Model driven capabilities of the DA-GRS model. ICAS 2006: Proceedings of the International Conference on Autonomic and Autonomous Systems, 24 (2006)Google Scholar
  9. 9.
    Gandhi, R., Mishra, A., Parthasarathy, S.: Minimizing broadcast latency and redundancy in ad hoc networks. IEEE/ACM Transactions on Networking 16, 840–851 (2008)CrossRefGoogle Scholar
  10. 10.
    Sopena, E., Metivier, Y.: Graph relabeling systems: a general overview. Computers and Artificial Intelligence 16(2), 167–185 (1997)MATHMathSciNetGoogle Scholar
  11. 11.
    Gast, M.: 802.11 Wireless Networks: The Definitive Guide, 2nd edn. O’Reilly, Sebastopol (2005)Google Scholar
  12. 12.
    IEEE standard 802.11: Wireless lan medium access control and physical layer specifications, August 1999. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  13. 13.
    Cardelli, L.: An implementation model of rendezvous communication. LNCS, vol. 197. Springer, Heidelberg (1985)Google Scholar
  14. 14.
    Goodaire, E.G., Parmenter, M.M.: Discrete mathematics with graph theory, 2nd edn. Prientice Hall Inc., Upper Saddle River (2002)Google Scholar
  15. 15.
    Bauer, N., Colagrosso, M., Camp, T.: An agile approach to distributed information dissemination in mobile ad hoc networks. In: IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Washington, DC, USA, pp. 131–141 (2005)Google Scholar
  16. 16.
    Stojmenovic, I., Russell, M., Vukojevic, B.: Depth first search and location based localized routing and qos routing in wireless networks. In: Intl. Conf. on Parallel Processing (ICPP 2000) (2000)Google Scholar
  17. 17.
    Hogie, L., Bouvry, P., Guinand, F., Danoy, G., Alba, E.: Simulating Realistic Mobility Models for Large Heterogeneous MANETS. In: Demo proceeding of the 9th ACM/IEEE International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWIM 2006), pp. 129–141. IEEE, Los Alamitos (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Apivadee Piyatumrong
    • 1
  • Patricia Ruiz
    • 1
  • Pascal Bouvry
    • 1
  • Frederic Guinand
    • 2
  • Kittichai Lavangnananda
    • 3
  1. 1.Faculty of Science, Technology & CommunicationUniversity of Luxembourg 
  2. 2.Le Havre UniversityFrance
  3. 3.School of Information TechnologyBangkokThailand

Personalised recommendations