Designing Workflows on the Fly Using e-BioFlow

  • Ingo Wassink
  • Matthijs Ooms
  • Paul van der Vet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5900)


Life scientists use workflow systems for service orchestration to design their computer based experiments. These workflow systems require life scientists to design complete workflows before they can be run. Traditional workflow systems not support the explorative research approach life scientists prefer. In life science, it often happens that few steps are known in advance. Even if these steps are known, connecting these tasks still remains difficult.

We have extended the e-BioFlow workflow system with an ad-hoc editor to support on-the-fly workflow design. This ad-hoc editor enables an ad-hoc design of the workflow with no predetermined plan of the final workflow. Users can execute partial workflows and extend these workflows using intermediate results. The ad-hoc editor enables its users to explore data and tasks representing tools and web services, in order to debug the workflow and to optimise parameter settings. Furthermore, it guides its users to find and connect compatible tasks. The result is a new workflow editor that simplifies workflow design and that better fits the explorative research style life scientists prefer.


Data Item Output Port Input Port Complex Data Structure Compatible Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kell, D., Oliver, S.: Here is the evidence, now what is the hypothesis? BioEssays 26(1), 99–105 (2004)CrossRefGoogle Scholar
  2. 2.
    Mahoui, M., Lu, L., Gao, N., Li, N., Chen, J., Bukhres, O., Miled, Z.: A dynamic workflow approach for the integration of bioinformatics services. Cluster Computing 8(4), 279–291 (2005)CrossRefGoogle Scholar
  3. 3.
    Shao, Q., Sun, P., Chen, Y.: Efficiently discovering critical workflows in scientific explorations. Future Generation Computer Systems 25(5), 577–585 (2009)CrossRefGoogle Scholar
  4. 4.
    Barga, R., Gannon, D.: Scientific versus business workflows. In: Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.) Workflows for e-Science, pp. 258–275. Springer, Berlin (2007)Google Scholar
  5. 5.
    Gibson, A., Gamble, M., Wolstencroft, K., Oinn, T., Goble, C.: The data playground: An intuitive workflow specification environment. In: Cox, S. (ed.) E-SCIENCE 2007: Proceedings of the Third IEEE International Conference on e-Science and Grid Computing, Washington, DC, USA, pp. 59–68. IEEE Computer Society Press, Los Alamitos (2007)CrossRefGoogle Scholar
  6. 6.
    Wassink, I., Rauwerda, H., van der Vet, P., Breit, T., Nijholt, A.: e-BioFlow: Different perspectives on scientific workflows. In: Elloumi, M., Küng, J., Linial, M., Murphy, R.F., Schneider, K., Toma, C. (eds.) 2nd International Conference on Bioinformatics Research and Development (BIRD), Vienna, Austria, pp. 243–257 (2008)Google Scholar
  7. 7.
    Wainer, J., Weske, M., Gottfried, V., Bauzer Medeiros, C.: Scientific workflow systems. In: Proceedings of the NSF Workshop on Workflow and Process Automation in Information Systems, Athens, Georgia, pp. 1–5 (1997)Google Scholar
  8. 8.
    Green, T.R.G., Petre, M.: Usability analysis of visual programming environments: A cognitive dimensions framework. Journal of Visual Languages & Computing 7(2), 131–174 (1996)CrossRefGoogle Scholar
  9. 9.
    Wassink, I., van der Vet, P., Wolstencroft, K., Neerincx, P., Roos, M., Rauwerda, H., Breit, T.: Analysing scientific workflows: why workflows not only connect web services. In: Zhang, L. (ed.) SERVICES 2009 (Part I), Los Angeles, USA, pp. 314–321 (2009)Google Scholar
  10. 10.
    Goble, C., De Roure, D.: MyExperiment: Social networking for workflow-using e-scientists. In: Deelman, E., Taylor, I. (eds.) WORKS 2007, Monterey, California, USA, pp. 1–2 (2007)Google Scholar
  11. 11.
    Goderis, A., De Roure, D., Goble, C., Bhagat, J., Cruickshank, D., Fisher, P., Michaelides, D., Tanoh, F.: Discovering scientific workflows: The myExperiment benchmarks. IEEE Transactions on Automation Science and Engineering (2008) (Submitted)Google Scholar
  12. 12.
    Whitley, K.: Visual programming languages and the empirical evidence for and against. Journal of Visual Languages & Computing 8(1), 109–142 (1997)CrossRefGoogle Scholar
  13. 13.
    Costabile, M., Fogli, D., Mussio, P., Piccinno, A.: Visual interactive systems for end-user development: A model-based design methodology. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 37(6), 1029–1046 (2007)CrossRefGoogle Scholar
  14. 14.
    Kulyk, O., Wassink, I., van der Vet, P.E., van der Veer, G.C., van Dijk, E.M.A.G.: Sticks, balls or a ribbon? results of a formative user study with bioinformaticians. Technical Report TR-CTIT-08-72, CTIT, University of Twente, Enschede (2008)Google Scholar
  15. 15.
    Downey, L.: Group usability testing: Evolution in usability techniques. Journal of Usability Studies 2(3), 133–144 (2007)MathSciNetGoogle Scholar
  16. 16.
    Hundhausen, C., Lee Brown, J.: An experimental study of the impact of visual semantic feedback on novice programming. Journal of Visual Languages and Computing archive 18(6), 537–559 (2007)CrossRefGoogle Scholar
  17. 17.
    Gordon, P., Sensen, S.: Seahawk: moving beyond html in web-based bioinformatics analysis. BMC bioinformatics 8(208), 1–13 (2007)Google Scholar
  18. 18.
    Robbes, R., Lanza, M.: How program history can improve code completion. In: Inverardi, P., Ireland, A., Visser, W. (eds.) 23rd IEEE/ACM International Conference on Automated Software Engineering (ASE 2008), Aquila, Italy, September 2008, pp. 317–326 (2008)Google Scholar
  19. 19.
    Wroe, C., Goble, C., Greenwood, M., Lord, P., Miles, S., Papay, J., Payne, T., Moreau, L.: Automating experiments using semantic data on a bioinformatics grid. IEEE Intelligent Systems 19(1), 48–55 (2004)CrossRefGoogle Scholar
  20. 20.
    Neerincx, P., Leunissen, J.: Evolution of web services in bioinformatics. Briefings in Bioinformatics 6(2), 178–188 (2005)CrossRefGoogle Scholar
  21. 21.
    Belhajjame, K., Embury, S., Paton, N.: On characterising and identifying mismatches in scientific workflows. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 240–247. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Kappler, M.: Software for rapid prototyping in the pharmaceutical and biotechnology industries. Current Opinion in Drug Discovery & Development 11(3), 389–392 (2008)Google Scholar
  23. 23.
    Shon, J., Ohkawa, H., Hammer, J.: Scientific workflows as productivity tools for drug discovery. Current Opinion in Drug Discovery & Development 11(3), 381–388 (2008)Google Scholar
  24. 24.
    Lau, T.A., Weld, D.S.: Programming by demonstration: an inductive learning formulation. In: Maybury, M., Szekely, P., Thomas, C.G. (eds.) IUI 1999: Proceedings of the 4th international conference on Intelligent user interfaces, pp. 145–152. ACM Press, New York (1999)CrossRefGoogle Scholar
  25. 25.
    van der Aalst, W., Aldred, L., Dumas, M., ter Hofstede, A.: Design and implementation of the YAWL system. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 142–159. Springer, Heidelberg (2004)Google Scholar
  26. 26.
    Moreau, L., Plale, B., Miles, S., Goble, C., Missier, P., Barga, R., et al.: The Open Provenance Model (v1.01). Technical report, University of Southampton (2008)Google Scholar
  27. 27.
    Moreau, L., Freire, J., Futrelle, J., Mcgrath, R., Myers, J., Paulson, P.: The open provenance model: An overview. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 323–326. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Shields, M.: Control- versus data-driven workflows. In: Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.) Workflows for e-Science, pp. 258–275. Springer, Berlin (2007)Google Scholar
  29. 29.
    Ihaka, R., Gentleman, R.: R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics 5(3), 299–314 (1996)CrossRefGoogle Scholar
  30. 30.
    Kent, W.: Blat–the blast-like alignment tool. Genome Research 12(4), 656–664 (2002)MathSciNetGoogle Scholar
  31. 31.
    Flicek, P., Aken, B., Beal, K., Ballester, B., Caccamo, M., Chen, Y., Clarke, L., Coates, G., Cunningham, F., Cutts, T., Down, T., Dyer, S., Eyre, T., Fitzgerald, S., Fernandez-Banet, J., Gräf, S., Haider, S., Hammond, M., Holland, R., Howe, K., Howe, K., Johnson, N., Jenkinson, A., Kähäri, A., Keefe, D., Kokocinski, F., Kulesha, E., Lawson, D., Longden, L., Megy, K., Meidl, P., Overduin, B., Parker, A., Pritchard, B., Prlic, A., Rice, S., Rios, D., Schuster, M., Sealy, I., Slater, G., Smedley, D., Spudich, G., Trevanion, S., Vilella, A., Vogel, J., White, S., Wood, M., Birney, E., Cox, T., Curwen, V., Durbin, R., Fernandez-Suarez, X., Herrero, J., Hubbard, T., Kasprzyk, A., Proctor, G., Smith, J., Ureta-Vidal, A., Searle, S.: Ensembl 2008. Nucleic Acids Research 36(Database issue), D707–D714 (2008)Google Scholar
  32. 32.
    Tomasic, A., McGuire, R., Myers, B.: Workflow by example: Automating database interactions via induction. Technical Report CMU-ISRI-06-103, Carnegie Mellon University (2006)Google Scholar
  33. 33.
    Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The konstanz information miner. In: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., Decker, R. (eds.) Data Analysis, Machine Learning and Applications, pp. 319–326. Springer, Berlin (2008)CrossRefGoogle Scholar
  34. 34.
    Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover, K., Pocock, M., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment of bioinformatics workflows. Oxford Bioinformatics 20(17), 3045–3054 (2004)CrossRefGoogle Scholar
  35. 35.
    Oinn, T., Li, P., Kell, D., Goble, C., Goderis, A., Greenwood, M., Hull, D., Stevens, R., Turi, D., Zhao, J.: Taverna/myGrid: Aligning a workflow system with the life sciences community. In: Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.) Workflows for e-Science, pp. 300–319. Springer, Berlin (2007)CrossRefGoogle Scholar
  36. 36.
    Reichert, M., Dadam, P.: Enabling adaptive process-aware information systems with ADEPT2. In: Research on Business Process Modeling. Information Science Reference, pp. 173–203 (2009)Google Scholar
  37. 37.
    Wassink, I., van der Vet, P., van Dijk, E., Veer, G., Roos, M.: New interactions with workflow systems. In: European Conference on Cognitive Ergonomics 2009 (ECCE 2009), Otaniemi, Finland (in press, 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ingo Wassink
    • 1
    • 2
  • Matthijs Ooms
    • 1
  • Paul van der Vet
    • 1
    • 2
  1. 1.Human Media Interaction GroupUniversity of TwenteEnschedeThe Netherlands
  2. 2.The Netherlands Bioinformatics Centre (NBIC) 

Personalised recommendations