Advertisement

Compositional Verification of Input-Output Conformance via CSP Refinement Checking

  • Augusto Sampaio
  • Sidney Nogueira
  • Alexandre Mota
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5885)

Abstract

This paper contributes to a testing theory, based on the CSP process algebra, whose conformance relation (cspio) distinguishes input and output events. Although cspio has been defined in terms of the standard CSP traces model, we show that our theory can be immediately extended to address deadlock, outputlock and livelock situations if a special output event is used to represent quiescence. This is formally established by showing that this broader view of cspio is equivalent to Tretmans’ ioco relation. Furthermore, we address compositional conformance verification, establishing compositionality properties for cspio with respect to process composition operators. Our testing theory has been adopted in an industrial context involving a collaboration with Motorola, whose focus is on the testing of mobile applications. Some examples are presented to illustrate the overall approach.

Keywords

Testing Theory Output Event Parallel Composition Label Transition System Process Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrial, J.-R.: The B-book: assigning programs to meanings. Cambridge University Press, New York (1996)zbMATHGoogle Scholar
  2. 2.
    Aichernig, B.K., Delgado, C.C.: From faults via test purposes to test cases: On the fault-based testing of concurrent systems. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 324–338. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Aichernig, B.K., Weiglhofer, M., Wotawa, F.: Improving fault-based conformance testing. ENTCS 220(1), 63–77 (2008)Google Scholar
  4. 4.
    Ball, T.: Automated abstraction of software. In: Automated Technology for Verification and Analysis, Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Belinfante, A., Feenstra, J., de Vries, R.G., Tretmans, J., Goga, N., Feijs, L.M.G., Mauw, S., Heerink, L.: Formal test automation: A simple experiment. In: Proceedings of the IFIP TC6 12th International Workshop on Testing Communicating Systems, pp. 179–196. Kluwer, B.V (1999)Google Scholar
  6. 6.
    Cabral, G., Sampaio, A.: Formal Specification Generation from Requirement Documents. ENTCS 195, 171–188 (2008)Google Scholar
  7. 7.
    Cavalcanti, A., Gaudel, M.-C.: Testing for Refinement in CSP. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS, vol. 4789, pp. 151–170. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Transactions Programming Languages Systems 8(2), 244–263 (1986)zbMATHCrossRefGoogle Scholar
  9. 9.
    Gaudel, M.-C.: Testing Can Be Formal, Too. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 82–96. Springer, Heidelberg (1995)Google Scholar
  10. 10.
    Godefroid, P.: Compositional dynamic test generation. SIGPLAN Notices 42(1), 47–54 (2007)CrossRefGoogle Scholar
  11. 11.
    Gotzhein, R., Khendek, F.: Compositional testing of communication systems. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964, pp. 227–244. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  13. 13.
    Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  14. 14.
    Isobe, Y., Roggenbach, M.: A Generic Theorem Prover of CSP Refinement. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 108–123. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Jard, C., Jéron, T.: TGV: theory, principles and algorithms: A tool for the automatic synthesis of conformance test cases for non-deterministic reactive systems. International Journal on Software Tools for Technology Transfer 7(4), 297–315 (2005)CrossRefGoogle Scholar
  16. 16.
    Jones, C.B.: Systematic software development using VDM, 2nd edn. Prentice-Hall, Inc., Upper Saddle River (1990)zbMATHGoogle Scholar
  17. 17.
    Formal Systems. Failures-Divergence Refinement - FDR2 User Manual. Formal Systems (Europe) Ltd (June 2005)Google Scholar
  18. 18.
    Nogueira, S., Sampaio, A., Mota, A.: Guided Test Generation from CSP Models. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 258–273. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Peleska, J., Siegel, M.: Test automation of safety-critical reactive systems. South African Computer Journal 19, 53–77 (1997)Google Scholar
  20. 20.
    Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR, Englewood Cliffs (1997)Google Scholar
  21. 21.
    Schneider, S.: Abstraction and testing. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 738–757. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Schneider, S.: Concurrent and Real Time Systems: The CSP Approach (Worldwide Series in Computer Science). John Wiley & Sons, Chichester (1999)Google Scholar
  23. 23.
    Torres, D., Leitão, D., Barros, F.A.: Motorola SpecNL: A Hybrid System to Generate NL Descriptions from Test Case Specifications. HIS, 45 (2006)Google Scholar
  24. 24.
    Tretmans, J.: Test Generation with Inputs, Outputs and Repetitive Quiescence. Software—Concepts and Tools 17(3), 103–120 (1996)zbMATHGoogle Scholar
  25. 25.
    Tretmans, J.: Testing concurrent systems: A formal approach. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    van der Bijl, M., Peureux, F.: 7 I/O-automata Based Testing. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 173–200. Springer, Heidelberg (2005)Google Scholar
  27. 27.
    van der Bijl, M., Rensink, A., Tretmans, J.: Compositional testing with ioco. In: Petrenko, A., Ulrich, A. (eds.) FATES 2003. LNCS, vol. 2931, pp. 86–100. Springer, Heidelberg (2004)Google Scholar
  28. 28.
    Weiglhofer, M., Aichernig, B.: Unifying input output conformance. In: Proceedings of the 2nd International Symposium on Unifying Theories of Programming. LNCS, vol. 5713. Springer, Heidelberg (2008)Google Scholar
  29. 29.
    Weiglhofer, M., Wotawa, F.: On the fly input output conformance verification. In: Proceedings of the IASTED International Conference on Software Engineering, Innsbruck, Austria, pp. 286–291. ACTA Press (2008)Google Scholar
  30. 30.
    Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice Hall International, Englewood Cliffs (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Augusto Sampaio
    • 1
  • Sidney Nogueira
    • 1
  • Alexandre Mota
    • 1
  1. 1.Centro de InformáticaUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations