Proofs of Storage from Homomorphic Identification Protocols

  • Giuseppe Ateniese
  • Seny Kamara
  • Jonathan Katz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5912)

Abstract

Proofs of storage (PoS) are interactive protocols allowing a client to verify that a server faithfully stores a file. Previous work has shown that proofs of storage can be constructed from any homomorphic linear authenticator (HLA). The latter, roughly speaking, are signature/message authentication schemes where ‘tags’ on multiple messages can be homomorphically combined to yield a ‘tag’ on any linear combination of these messages.

We provide a framework for building public-key HLAs from any identification protocol satisfying certain homomorphic properties. We then show how to turn any public-key HLA into a publicly-verifiable PoS with communication complexity independent of the file length and supporting an unbounded number of verifications. We illustrate the use of our transformations by applying them to a variant of an identification protocol by Shoup, thus obtaining the first unbounded-use PoS based on factoring (in the random oracle model).

References

  1. 1.
    Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song, D.: Provable data possession at untrusted stores. In: ACM Conference on Computer and Communications Security. ACM, New York (2007)Google Scholar
  2. 2.
    Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient provable data possession. In: Proc. 4th Intl. Conf. on Security and Privacy in Communication Netowrks (SecureComm 2008), pp. 1–10. ACM, New York (2008)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)Google Scholar
  4. 4.
    Bowers, K., Juels, A., Oprea, A.: Proofs of retrievability: Theory and implementation. Technical Report 2008/175, Cryptology ePrint Archive (2008)Google Scholar
  5. 5.
    Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplification. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Erway, C., Papamanthou, C., Kupcu, A., Tamassia, R.: Dynamic provable data possession. In: ACM Conf. on Computer and Communications Security (to appear, 2009). Available as Cryptology ePrint Archive, Report 2008/432Google Scholar
  7. 7.
    Feige, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. J. Cryptology 1(2), 77–94 (1988)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. J. Cryptology 9(3), 167–190 (1996)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Groth, J.: A verifiable secret shuffle of homomorphic encryptions. Technical Report 2005/246, IACR ePrint Cryptography Archive (2005)Google Scholar
  10. 10.
    Guillou, L., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)Google Scholar
  11. 11.
    Juels, A., Kaliski, B.: PORs: Proofs of retrievability for large files. In: ACM Conference on Computer and Communications Security. ACM, New York (2007)Google Scholar
  12. 12.
    Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation. J. Cryptology 16(3), 143–184 (2003)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Naor, M., Rothblum, G.: The complexity of online memory checking. In: IEEE Symposium on Foundations of Computer Science, pp. 573–584. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  14. 14.
    Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008), Full version http://eprint.iacr.org CrossRefGoogle Scholar
  15. 15.
    Shoup, V.: On the security of a practical identification scheme. J. Cryptology 12(4), 247–260 (1999)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Giuseppe Ateniese
    • 1
  • Seny Kamara
    • 2
  • Jonathan Katz
    • 3
  1. 1.The Johns Hopkins University 
  2. 2.Microsoft Research 
  3. 3.University of Maryland 

Personalised recommendations