Interactive Multiobjective Optimization for 3D HDR Brachytherapy Applying IND-NIMBUS

  • Henri Ruotsalainen
  • Kaisa Miettinen
  • Jan-Erik Palmgren
Conference paper
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 638)


An anatomy based three-dimensional dose optimization approach for HDR brachytherapy using interactive multiobjective optimization is presented in this paper. In brachytherapy, the goals are to irradiate a tumor without causing damage to healthy tissue. These goals are often conflicting, i.e. when one target is optimized the other one will suffer, and the solution is a compromise between them. Our interactive approach is capable of handling multiple and strongly conflicting objectives in a convenient way, and thus, the weaknesses of widely used optimization techniques (e.g. defining weights, computational burden and trial-and-error planning) can be avoided. In addition, our approach offers an easy way to navigate among the obtained Pareto optimal solutions (i.e. different treatment plans), and plan quality can be improved by finding advantageous trade-offs between the solutions. To demonstrate the advantages of our interactive approach, a clinical example of seeking dwell time values of a source in a gynecologic cervix cancer treatment is presented.


Decision Maker Planning Target Volume Multiobjective Optimization Pareto Optimal Solution Aspiration Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Craft D, Bortfeld T (2008) How many plans are needed in an IMRT multi-objective plan database? Phys Med Biol 53:2785–2796CrossRefGoogle Scholar
  2. Craft D, Halabi T, Bortfeld T (2005) Exploration of tradeoffs in intensity-modulated radiotherapy. Phys Med Biol 50:5857–5868CrossRefGoogle Scholar
  3. Craft D, Halabi T, Shih HA, Bortfeld T (2007) An approach for practical multiobjective IMRT treatment planning. Int J Radiat Oncol Biol Phys 69:1600–1607CrossRefGoogle Scholar
  4. Ehrgott M, Winz I (2008) Interactive decision support in radiotherapy treatment planning. OR Spectrum 30:311–329CrossRefGoogle Scholar
  5. Hoffmann AL, Siem AYD, den Hertog D, Kaanders JHAM, Huizenga H (2006) Derivate-free generation and interpolation of convex Pareto optimal IMRT plans. Phys Med Biol 51:6349–6369CrossRefGoogle Scholar
  6. Holder A (2006) Partitioning multiple objective optimal solutions with applications in radiotherapy design. Optim Eng 7:501–526CrossRefGoogle Scholar
  7. Lahanas M, Baltas D (2003) Are dose calculations during dose optimization in brachytherapy necessary? Med Phys 30(9):2368–2375CrossRefGoogle Scholar
  8. Lahanas M, Baltas D, Zamboglou N (1999) Anatomy-based three-dimensional dose optimization in brachytherapy using multiobjective genetic algorithms. Med Phys 26:1904–1918CrossRefGoogle Scholar
  9. Lahanas M, Milickovic N, Papagiannopoulou M, Baltas D, Zamboglou N, Karouzakis K (2001) Application of a hybrid version of NSGA-II for multiobjective dose optimization in brachytherapy. In: Giannakoglou KC, Tsahalis DT, Périaux J, Papailiou KD, Fogarty T (eds) Evolutionary methods for design, optimization and control with applications to industrial problems. International Center for Numerical Methods in Engineering (CIMNE), Athens, Greece, pp 299–304Google Scholar
  10. Lahanas M, Baltas D, Giannouli S (2003a) Global convergence analysis of fast multiobjective gradient based dose optimization algorithms for high dose rate brachytherapy. Phys Med Biol 48:599–617CrossRefGoogle Scholar
  11. Lahanas M, Baltas D, Zamboglou N (2003b) A hybrid evolutionary algorithm for multiobjective anatomy based dose optimization in HDR brachytherapy. Phys Med Biol 48:399–415CrossRefGoogle Scholar
  12. Larichev O (1992) Cognitive validity in design of decision aiding techniques. J Multicriteria Decis Anal 1:127–138CrossRefGoogle Scholar
  13. Lessard E, Pouliot J (2001) Inverse planning anatomy-based dose optimization for HDR-brachytherapy of the prostate using fast simulated annealing algorithm and dedicated objective function. Med Phys 28:773–779CrossRefGoogle Scholar
  14. Lessard E, Hsu I, Pouliot J (2002) Inverse planning for interstitial gynecologic template brachytherapy: truly anatomy-based planning. Int J Rad Oncol Biol Phys 54:1243–1251CrossRefGoogle Scholar
  15. Lessard E, Hsu I, Aubry J, Pouliot J (2006) SU-FF-T-337: multiobjective inverse planning optimization: adjustment of dose homogeneity and urethra protection in HDR-brachytherapy of the prostate. Med Phys 33:2124CrossRefGoogle Scholar
  16. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, BostonGoogle Scholar
  17. Miettinen K (2006) IND-NIMBUS for demanding interactive multiobjective optimization. In: Trzaskalik T (ed) Multiple criteria decision making ’05. The Karol Adamiecki University of Economics, Katowice, pp 137–150Google Scholar
  18. Miettinen K, Mäkelä MM (1995) Interactive bundle-based method for nondifferentiable multiobjective optimization: NIMBUS. Optimization 34:231–246CrossRefGoogle Scholar
  19. Miettinen K, Mäkelä MM (2002) On scalarizing functions in multiobjective optimization. OR Spectrum 24:193–213CrossRefGoogle Scholar
  20. Miettinen K, Mäkelä MM (2006) Synchronous approach in interactive multiobjective optimization. Eur J Oper Res 170:909–922CrossRefGoogle Scholar
  21. Milickovic N, Lahanas M, Papagiannopoulou M, Baltas D, Zamboglou N, Karouzakis K (2001) Application of multiobjective genetic algorithms in anatomy based dose optimization in brachytherapy and its comparison with deterministic algorithms. In: Giannakoglou KC, Tsahalis DT, Périaux J, Papailiou KD, Fogarty T (eds) Evolutionary methods for design, optimization and control with applications to industrial problems. International Center for Numerical Methods in Engineering (CIMNE), Athens, Greece, pp 293–298Google Scholar
  22. Milickovic N, Lahanas M, Papagiannopoulou M, Zamboglou N, Baltas D (2002) Multiobjective anatomy-based dose optimization for HDR-brachytherapy with constraint free deterministic algorithms. Phys Med Biol 47:2263–2280CrossRefGoogle Scholar
  23. Monz M, Küfer KH, Bortfeld TR, Thieke C (2008) Pareto navigation – algorithmic foundation of interactive multi-criteria IMRT planning. Phys Med Biol 53:985–998CrossRefGoogle Scholar
  24. Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS (1995) Dosimetry of interstitial brachytherapy sources: recommentations ot the AAPM radiation therapy committee task group no. 43. Med Phys 22:209–234CrossRefGoogle Scholar
  25. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Saiful Huq M, Ibbott GS, Mitch MG, Nath R, Williamson JF (2004) Update of AAPM task group no. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31:633–674CrossRefGoogle Scholar
  26. Romeijn HE, Dempsey JF, Li JG (2004) A unifying framework for multi-criteria fluence map optimization models. Phys Med Biol 49:1991–2013CrossRefGoogle Scholar
  27. Ruotsalainen H, Boman E, Miettinen K, Hämäläinen J (2006) Interactive multiobjective optimization for IMRT. Working Papers W-409.
  28. Thieke C, Küfer KH, Monz M, Scherrer A, Alonso F, Oelfke U, Huber PE, Debus J, Bortfeld T (2007) A new concept for interactive radiotherapy planning with multicriteria optimization: first clinical evaluation. Radiother Oncol 85:292–298CrossRefGoogle Scholar
  29. Yu Y (1997) Multiobjective decision theory for computational optimization in radiation therapy. Med Phys 24:1445–1454CrossRefGoogle Scholar
  30. Yu Y, Zhang JB, Cheng G, Schell MC, Okunieff P (2000) Multi-objective optimization in radiotherapy: applications to stereotactic radiosurgery and prostate brachytherapy. Artif Intell Med 19:39–51CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Henri Ruotsalainen
    • 1
  • Kaisa Miettinen
  • Jan-Erik Palmgren
  1. 1.Department of PhysicsUniversity of KuopioKuopioFinland

Personalised recommendations