A Predictive Collision Avoidance Model for Pedestrian Simulation

  • Ioannis Karamouzas
  • Peter Heil
  • Pascal van Beek
  • Mark H. Overmars
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5884)


We present a new local method for collision avoidance that is based on collision prediction. In our model, each pedestrian predicts possible future collisions with other pedestrians and then makes an efficient move to avoid them. Experiments show that the new approach leads to considerably shorter and less curved paths, ensuring smooth avoidance behaviour and visually compelling simulations. The method reproduces emergent behaviour like lane formation that have been observed in real crowds. The technique is easy to implement and is fast, allowing the simulation in real time of crowds of thousands of pedestrians.


collision avoidance interaction pedestrian simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Transactions on Graphics 25(3), 1160–1168 (2006)CrossRefGoogle Scholar
  2. 2.
    Lamarche, F., Donikian, S.: Crowd of virtual humans: a new approach for real time navigation in complex and structured environments. Computer Graphics Forum 23, 509–518 (2004)CrossRefGoogle Scholar
  3. 3.
    Geraerts, R., Overmars, M.: The corridor map method: A general framework for real-time high-quality path planning. Computer Animation and Virtual Worlds 18, 107–119 (2007)CrossRefGoogle Scholar
  4. 4.
    Sud, A., Gayle, R., Andersen, E., Guy, S., Lin, M., Manocha, D.: Real-time navigation of independent agents using adaptive roadmaps. In: ACM symposium on Virtual reality software and technology, pp. 99–106 (2007)Google Scholar
  5. 5.
    Shao, W., Terzopoulos, D.: Autonomous pedestrians. Graphical Models 69(5-6), 246–274 (2007)CrossRefGoogle Scholar
  6. 6.
    Reynolds, C.W.: Steering behaviors for autonomous characters. In: The proceedings of Game Developers Conference, pp. 763–782 (1999)Google Scholar
  7. 7.
    Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Physical Review E 51, 4282–4286 (1995)CrossRefGoogle Scholar
  8. 8.
    Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science 39(1) (2005)Google Scholar
  9. 9.
    Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: SCA 2007: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 99–108 (2007)Google Scholar
  10. 10.
    Paris, S., Pettré, J., Donikian, S.: Pedestrian reactive navigation for crowd simulation: a predictive approach. Computer Graphics Forum 26(3), 665–674 (2007)CrossRefGoogle Scholar
  11. 11.
    van den Berg, J.P., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: ICRA, pp. 1928–1935. IEEE, Los Alamitos (2008)Google Scholar
  12. 12.
    Pettré, J., Ondrej, J., Olivier, A.H., Crétual, A., Donikian, S.: Experiment-based modeling, simulation and validation of interactions between virtual walkers. In: SCA 2009: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 189–198 (2009)Google Scholar
  13. 13.
    Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. Computer Graphics Forum 26, 655–664 (2007)CrossRefGoogle Scholar
  14. 14.
    Lee, K., Choi, M., Hong, Q., Lee, J.: Group behavior from video: a data-driven approach to crowd simulation. In: SCA 2007: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 109–118 (2007)Google Scholar
  15. 15.
    Goffman, E.: Relations in public: microstudies of the public order. Basic books, New York (1971)Google Scholar
  16. 16.
    Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley, Reading (1949)Google Scholar
  17. 17.
    Singh, S., Kapadia, M., Faloutsos, P., Reinman, G.: Steerbench: a benchmark suite for evaluating steering behaviors. Computer Animation and Virtual Worlds (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ioannis Karamouzas
    • 1
  • Peter Heil
    • 1
  • Pascal van Beek
    • 1
  • Mark H. Overmars
    • 1
  1. 1.Center for Advanced Gaming and SimulationUtrecht UniversityThe Netherlands

Personalised recommendations