Motion Pattern Encapsulation for Data-Driven Constraint-Based Motion Editing

  • Schubert R. Carvalho
  • Ronan Boulic
  • Daniel Thalmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5884)

Abstract

The growth of motion capture systems have contributed to the proliferation of human motion database, mainly because human motion is important in many applications, ranging from games entertainment and films to sports and medicine. However, the captured motions normally attend specific needs. As an effort for adapting and reusing captured human motions in new tasks and environments and improving the animator’s work, we present and discuss a new data-driven constraint-based animation system for interactive human motion editing. This method offers the compelling advantage that it provides faster deformations and more natural-looking motion results compared to goal-directed constraint-based methods found in the literature.

Keywords

Motion Models Motion Editing Inverse Kinematics PCA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Safonova, A., Hodgins, J.K., Pollard, N.S.: Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23(3), 514–521 (2004)CrossRefGoogle Scholar
  2. 2.
    Glardon, P., Boulic, R., Thalmann, D.: Robust on-line adaptive footplant detection and enforcement for locomotion. Vis. Comput. 22(3), 194–209 (2006)CrossRefGoogle Scholar
  3. 3.
    Chai, J., Hodgins, J.K.: Constraint-based motion optimization using a statistical dynamic model. ACM Trans. Graph. 26(3), 8 (2007)CrossRefGoogle Scholar
  4. 4.
    Urtasun, R., Glardon, P., Boulic, R., Thalmann, D., Fua, P.: Style-based motion synthesis. Computer Graphics Forum (CGF) 23(4), 799–812 (2004)CrossRefGoogle Scholar
  5. 5.
    Raunhardt, D., Boulic, R.: Motion constraint. Vis. Comput. 25(5-7), 509–518 (2009)CrossRefGoogle Scholar
  6. 6.
    Shin, H.J., Lee, J.: Motion synthesis and editing in low-dimensional spaces. Comput. Animat. Virtual Worlds 17(3‐4), 219–227 (2006)CrossRefGoogle Scholar
  7. 7.
    Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)Google Scholar
  8. 8.
    Le Callennec, B., Boulic, R.: Interactive motion deformation with prioritized constraints. Graphical Models 68(2), 175–193 (2006); Special Issue on SCA 2004CrossRefGoogle Scholar
  9. 9.
    Gleicher, M.: Comparing constraint-based motion editing methods. Graphical models 63(2), 107–134 (2001)MATHCrossRefGoogle Scholar
  10. 10.
    Kulpa, R., Multon, F., Arnaldi, B.: Morphology-independent representation of motions for interactive human-like animation. In: EUROGRAPHICS, August-September 2005, vol. 24, pp. 343–352 (2005)Google Scholar
  11. 11.
    Lee, J., Shin, S.Y.: A hierarchical approach to interactive motion editing for human-like figures. In: Proceedings of ACM SIGGRAPH (1999)Google Scholar
  12. 12.
    Liu, L., Zhao-qi, W., Deng-Ming, Z., Shi-Hong, X.: Motion edit with collision avoidance. In: Proceedings of the WSCG, January 2006, pp. 303–310 (2006)Google Scholar
  13. 13.
    Arikan, O., Forsyth, D.A.: Interactive motion generation from examples. In: SIGGRAPH 2002: Proceedings of the 29th annual conference on Computer graphics and interactive techniques, pp. 483–490. ACM, New York (2002)CrossRefGoogle Scholar
  14. 14.
    Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Trans. Graph. 21(3), 473–482 (2002)CrossRefGoogle Scholar
  15. 15.
    Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. ACM Trans. Graph. 24(3), 1062–1070 (2005)CrossRefGoogle Scholar
  16. 16.
    Grochow, K., Martin, S.L., Hertzmann, A., Popovi, Z.: Style-based inverse kinematics. ACM Trans. Graph. 23(3), 522–531 (2004)CrossRefGoogle Scholar
  17. 17.
    Carvalho, S.R., Boulic, R., Thalmann, D.: Interactive low-dimensional human motion synthesis by combining motion models and pik. Computer Animation & Virtual Worlds 18 (2007); Special Issue of Computer Animation and Social Agents (CASA 2007)Google Scholar
  18. 18.
    Grassia, F.S.: Practical parameterization of rotations using the exponential map. Journal of Graphics Tools 3(3), 29–48 (1998)Google Scholar
  19. 19.
    Shoemake, K.: Animating rotation with quaternion curves. In: SIGGRAPH 1985, pp. 245–254. ACM Press, New York (1985)CrossRefGoogle Scholar
  20. 20.
    Baerlocher, P.: Inverse Kinematics Techniques of The Interactive Posture Control of Articulated Figures. Phd thesis, cole Polytechnique Fdral de Lausanne (EPFL) - IC School of Computer and Communication Sciences (2001)Google Scholar
  21. 21.
    Kochanek, D.H.U., Bartels, R.H.: Interpolating splines with local tension, continuity, and bias control. SIGGRAPH Comput. Graph. 18(3), 33–41 (1984)CrossRefGoogle Scholar
  22. 22.
    Whitney, D.E.: Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man-Mach. Syst. 10, 47–53 (1969)CrossRefGoogle Scholar
  23. 23.
    Maciejewski, A.A.: Dealing with the ill-conditioned equations of motion forarticulated figures. In: IEEE Computer Graphics and Applications, May 1990, vol. 10, pp. 63–71 (1990)Google Scholar
  24. 24.
    Carvalho, S.R., Boulic, R., Thalmann, D.: Motion pattern preserving ik operating in the motion principal coefficients space. In: Proceedings of 15-th WSCG, January-February 2007, pp. 97–104 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Schubert R. Carvalho
    • 1
  • Ronan Boulic
    • 1
  • Daniel Thalmann
    • 1
  1. 1.VRlabEPFLLausanneSwitzerland

Personalised recommendations