Skip to main content

Reflectance of various snow types: measurements, modeling, and potential for snow melt monitoring

  • Chapter
  • First Online:
Light Scattering Reviews 5

Abstract

Seasonal snow covers large parts of the northern hemisphere annually. It can change the albedo of the surfaces from dark to bright overnight (and back), causing significant climate feedback (Manninnen and Stenberg, 2008; Flanner and Zender, 2006; Pirazzini, 2008; Nolin and Frei, 2001; Roesch et al., 2001). It forms large energy reservoirs which can be exploited by hydro energy power plants, and is the source of big floods when melting. It can significantly impact traffic and construction safety. It changes living and environmental conditions radically, and has major recreational value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aoki, T., Aoki, T., Fukabori, M., Hachikubo, A., Tachibana, Y., and Nishio, F. (2000).

    Google Scholar 

  • Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow. J. Geophys. Res., 105(D8):10219–10236.

    Google Scholar 

  • Bohren, C. F. and Barkstrom, B. R. (1974). Theory of optical properties of snow. J. Geophys. Res., 79:4527–4535.

    Article  Google Scholar 

  • Bonnefoy, N. (2001). D´eveloppement d’un spectrophoto-goniom`etre pour l’etude de la r´eflectance bidirectionelle de surfaces g´eophysiques. Application au soufre et perspectives pour le satellite Io. PhD thesis, Universit´e Joseph Fourier, Grenoble.

    Google Scholar 

  • Bourgeois, C. S., Calanca, P., and Ohmura, A. (2006a). A field study of the hemispherical directional reflectance factor and spectral albedo of dry snow. J. Geophys. Res., 111(D20108).

    Google Scholar 

  • Bourgeois, C. S., Ohmura, A., Schroff, K., Frei, H.-J., and Calanca, P. (2006b). IAC ETH goniospectrometer: A tool for hyperspectral HDRF measurements. J Atmos Ocean Technol., 23(4):573.

    Google Scholar 

  • Bruegge, C. J., Helmlinger, M. C., Conel, J. E., Gaitley, B. J., and Abdou, W. A. (2000).

    Google Scholar 

  • PARABOLA III: A sphere-scanning radiometer for field determination of surface anisotropic reflectance functions. Remote Sensing Reviews, 19(1–4):75–94. The Second International Workshop on Multiangular Measurements and Models.

    Google Scholar 

  • Colbeck, S., Akitaya, E., Armstrong, R., Gubler, H., Lafeuille, J., Lied, K., McClung, D., and Morris, E. (1985). The international classification for seasonal snow on the ground. Technical report, The International Commission on Snow and Ice of the International Association of Scientific Hydrology, and International Glaciological Society. Working Group on Snow Classification.

    Google Scholar 

  • Courr´eges-Lacoste, G. B., Schaarsberg, J. G., Sprik, R., and Delwart, S. (2003). Modeling of Spectralon diffusers for radiometric calibration in remote sensing. Optical Engineering, 41(12):3600–3607.

    Google Scholar 

  • Dingman, S. (2002). Physical Hydrology. Prentice Hall.

    Google Scholar 

  • Dozier, J., Davis, R. E., and Nolin, A. W. (1989). Reflectance and transmittance of snow at high spectral resolution. In Proc. of the International Geoscience and Remote Sensing Symposium ’89, number No. 89 CH2768-0 in IEEE, pages 662–664, Vancouver, Canada.

    Google Scholar 

  • Dozier, J., Green, R. O., Nolin, A. W., and Painter, T. H. (2009). Interpretation of snow properties from imaging spectrometry. Remote Sensing of Environment, 113:S25–S37. Supplement 1.

    Google Scholar 

  • Eskelinen, M., Mets¨am¨aki, S., Pulliainen, J., Hallikainen, M., and Praks, J. (2003). The use of airborne optical spectrometer data in snow cover monitoring. In Geoscience and Remote Sensing Symposium, IGARSS, Proceedings, volume 4, pages 2823–2825.

    Google Scholar 

  • Flanner, M. G. and Zender, C. S. (2006). Linking snowpack microphysics and albedo evolution. J. Geophys. Res., 111(D12208).

    Google Scholar 

  • Georgiev, G. T. and Butler, J. J. (2004). The effect of incident light polarization on spectralon BRDF measurements. In Proc. SPIE, 5570:492–502.

    Article  Google Scholar 

  • Giardino, C. and Brivio, P. A. (2003). The application of a dedicated device to acquire bidirectional reflectance factors over natural surfaces. Int. J. Remote Sensing, 24(14):2989–2995.

    Article  Google Scholar 

  • Gray, D. M. and Male, D. H., editors (1981). The Handbook of Snow. Pergamon, Toronto.

    Google Scholar 

  • Green, R. O. and Dozier, J. (1995). Measurement of the spectral absorption of liquid water in melting snow with an imaging spectrometer. Technical Report 95-1, JPL, Pasadena, California.

    Google Scholar 

  • Green, R. O. and Dozier, J. (1996). Retrieval of surface snow grain size and melt water from AVIRIS spectra. In 6th AVIRIS Airborne Geoscience Workshop Proceedings, number 96-0653, Pasadena, California.

    Google Scholar 

  • Green, R. O., Dozier, J., Roberts, D. A., and Painter, T. H. (2002). Spectral snow reflectance models for grain size and liquid water fraction in melting snow for the solar reflected spectrum. Annals of Glaciology, 34:71–73.

    Article  Google Scholar 

  • Green, R. O., Painter, T. H., Roberts, D. A., and Dozier, J. (2006). Measuring the expressed abundance of the three phases of water with an imaging spctrometer over melting snow. Water Resources Research, 42:W10402.

    Article  Google Scholar 

  • Grenfell, T. C. and Warren, S. G. (1999). Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation. J. Geophys. Res., 104:31697–31709.

    Article  Google Scholar 

  • Grenfell, T. C., Neshyba, S. P., andWarren, S. G. (2005). Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation 3: Hollow columns and plates. J. Geophys. Res., 110(D17203).

    Google Scholar 

  • Haner, D., McGuckin, B., and Bruegge, C. (1999). Polarization characteristics of spectralon illuminated by coherent light. Appl. Opt., 38:6350–6356.

    Article  CAS  Google Scholar 

  • Hapke, B. (1993). Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press.

    Google Scholar 

  • Hendriks, E., Greuell, J., Oerlemans, J., Knap, W., and Stammes, P. (2004a). Anisotropy of reflected solar short wave radiation on a snow surface: Ground measurements and modeling. In Geophysical Research Abstracts, volume 6. SRef-ID: 1607-7962/gra/EGU04-A-03426.

    Google Scholar 

  • Hendriks, E., Greuell, W., Oerlemans, J., Knap, W., and Stammes, P. (2004b). Anisotropy of reflected solar short wave radiation on a snow surface: Ground measurements and modeling. In Eos. Trans. AGU, volume 85. Abstract #C33A-04.

    Google Scholar 

  • Hudson, S. R., Warren, S. G., Brandt, R. E., Grenfell, T. C., and Six, D. (2006). Spectral bidirectional reflectance of Antarctic snow: Measurements and parameterization. J. Geophys. Res., 111(D18106).

    Google Scholar 

  • Jin, Z. and Simpson, J. J. (1999). Bidirectional anisotropic reflectance of snow and sea ice in AVHRR channel 1 and 2 spectral regions – part I: Theoretical analysis. IEEE Trans. Geosci. Remote Sensing, 37(1):543–554.

    Article  Google Scholar 

  • Kaasalainen, S. (2002). Backscattering of light from solar system ices and regoliths. PhD thesis, University of Helsinki.

    Google Scholar 

  • Kaasalainen, S., Peltoniemi, J., N¨ar¨anen, J., Suomalainen, J., Kaasalainen, M., and Stenman, F. (2005). Small-angle goniometry for backscattering measurements in the broadband spectrum. Applied Optics, 44(8):1485–1490.

    Google Scholar 

  • Kaempfer, T. U., Hopkins, M. A., and Perovich, D. K. (2007). A three-dimensional microstructure-based photon-tracking model of radiative transfer in snow. J. Geophys. Res., 112(D24113).

    Google Scholar 

  • Knap, W. and Oerlemans, J. (1996). The surface albedo of the greenland ice sheet: Satellite-derived and in situ measurements in the sondre strofjord area during the 1991 melt season. Journal of Glaciology, 42(141):364–374.

    Google Scholar 

  • Kneub¨uhler, M., Itten, K. I., Rey, S., Schopfer, J. T., and Schneebeli, M. (2008). Towards combined spectrodirectional reflectance measurements and detailed snow microstructure studies. In 5th EARSeL Workshop on Remote Sensing of Land Ice and Snow. Knight, C. A. (1979). Observations of the morphology of melting snow. Journal of the Atmospheric Sciences, 36:1123–1130.

    Google Scholar 

  • Kokhanovsky, A. A. and Zege, E. P. (2004). Scattering optics of snow. Appl. Opt., 43:1589–1602.

    Article  CAS  Google Scholar 

  • Kokhanovsky, A. A., Aoki, T., Hachikubo, A., Hori, M., and Zege, E. P. (2005). Reflective properties of natural snow: approximate asymptotic theory versus in situ measurements. IEEE Transactions on Geoscience and Remote Sensing, 43:1529–1535.

    Article  Google Scholar 

  • Kuhn, M. (1985). Bidirectional reflectance of polar and alpine snow surface. Annals of Glaciology, 6:164–167.

    Google Scholar 

  • Leroux, C., Deuze, J.-L., Coulomb, P., Sergent, C., and Fily, M. (1998). Ground measurements of the polarized bidirectional reflectance of snow in the near-infrared spectral domain: Comparison with model results. J. Geophys. Res., 103:18721–18731.

    Google Scholar 

  • Li, S. and Zhou, X. (2004). Modelling and measuring the spectral bidirectional reflectance factor of snow-covered sea ice: an intercomparison study. Hydrological Processes, 18:3559–3581.

    Article  Google Scholar 

  • Liang, S. (2004). Quantitative Remote Sensing of Land Surfaces. Wiley Series in Remote Sensing. Wiley, Hoboken, NJ.

    Google Scholar 

  • Libbrecht, K. (2005). The physics of snow crystals. Reports on Progress in Physics, 68:855–895.

    Article  Google Scholar 

  • Lyapustin, A., Tedesco, M., Wang, Y., Aoki, T., Hori, M., and Kokhanovsky, A. (2009). Retrieval of snow grain size over Greenland using MODIS. Remote Sensing of Environment, 113:1976–1987.

    Article  Google Scholar 

  • Manninen, T. and Stenberg, P. (2008). Simulation of the effect of snow covered forest floor on the total forest albedo. Agricultural and Forest Meteorology, 149:303–319.

    Article  Google Scholar 

  • Manninen, T., Siljamo, N., and Poutiainen, J. (2006). Validation of the surface albedo product (SAL) of CM SAF in winter conditions. In Proceedings of the EUMETSAT Meteorological Satellite Conference, pages 48–54.

    Google Scholar 

  • Matikainen, L., Kuittinen, R., and Veps¨al¨ainen, J. (2002). Estimating drainage area-based snow-cover percentages from NOAA AVHRR images. International Journal of Remote Sensing, 23(15):2971–2988.

    Google Scholar 

  • Mets¨am¨aki, S., Veps¨al¨ainen, J., Pulliainen, J., and Sucksdorff, Y. (2002). Improved linear interpolation method for the estimation of snow-covered area from optical data. Remote Sensing of Environment, 82(1):64–78.

    Google Scholar 

  • Mets¨am¨aki, S. J., Anttila, S. T., Markus, H. J., and Veps¨al¨ainen, J. M. (2005). A feasible method for fractional snow cover mapping in boreal zone in boreal zone based on a reflectance model. Remote Sensing of Environment, 95:77–95.

    Google Scholar 

  • Middleton, W. E. K. and Mungall, A. G. (1952). The luminous directional reflectance of snow. Appl. Opt., 42(8):572–579.

    Google Scholar 

  • Mishchenko, M. I. (2008). Multiple scattering, radiative transfer, and weak localization in discrete random media: unified microphysical approach. Reviews of Geophysics, 46(RG2003).

    Google Scholar 

  • Mishchenko, M. I., Dlugach, J. M., Yanovitskij, E. G., and Zakharova, N. T. (1999). Bidirectional reflectance of flat, optically thick particulate layers: An efficient radiative transfer solution and applications to snow and soil surfaces. J. Quant. Spectrosc. Radiat. Transfer, 63(2-6):409–432.

    Article  CAS  Google Scholar 

  • Mishchenko, M., Hovenier, J., and Travis, L., editors (2000). Light Scattering by Non-Spherical Particles: Theory, Measurements and Applications. Academic Press, San Diego, CA.

    Google Scholar 

  • Moody, E. G., King, M. D., Schaaf, C. B., Hall, D. K., and Platnick, S. (2007). Northern hemisphere five-year average (2000–2004) spectral albedos of surfaces in the presence of snow: Statistics computed from Terra MODIS land products. Remote Sensing of Environment, 111:337–345.

    Article  Google Scholar 

  • Muinonen, K. O. (2004). Coherent backscattering of light by complex random media of spherical scatterers: numerical solution. Waves in Random Media, 14:365–388.

    Article  Google Scholar 

  • Muinonen, K., Nousiainen, T., Fast, P., Lumme, K., and Peltoniemi, J. I. (1996). Light scattering by Gaussian random particles: ray optics approximation. J. Quant. Spectrosc. Radiat. Transfer, 55(5):577–602.

    Article  CAS  Google Scholar 

  • Nakaya, U. (1954). Snow Crystals: Natural and Artificial. Harvard University Press.

    Google Scholar 

  • Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. (1977). Geometrical considerations and nomenclature for reflectance. Technical report, Institute for Basic Standards, National Bureau of Standards, Washington DC, USA.

    Google Scholar 

  • Nolin, A. W. and Dozier, J. (1991). Spectral reflectance of thin snow. In Proc. of the Fifth International Colloquium on Physical Measurements and Signatures in Remote Sensing, ESA SP-319, pages 439–442, Courchevel, France.

    Google Scholar 

  • Nolin, A. W., Dozier, J., and Davis, R. E. (1990). Bidirectional reflectance of opticallythin snow. In Proc. of the International Geoscience and Remote Sensing Symposium ’90, IEEE 90CH2825-8, pages 1159–1161, College Park, Maryland.

    Google Scholar 

  • Nolin, A. W. and Dozier, J. (2000). A hyperspectral method for remotely sensing the grain size of snow. Remote Sensing of Environment, 74:207–216.

    Article  Google Scholar 

  • Nolin, A. W. and Stroeve, J. C. (2001). Validation studies and sensitivity analyses for retrievals of snow albedo from EOS AM-1 instruments. progress report for year 2000-2001. Technical report, National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences.

    Google Scholar 

  • Nolin, A. W. and Frei, A. (2001). Remote sensing of snow and snow albedo characterization for climate simulations. In Beniston, M. and Verstraete, M. M., editors, Remote Sensing and Climate Simulations: Synergies and Limitations, Advances in Global Change Research, pages 159–180. Kluwer Academic Publishers, Dordrecht and Boston.

    Google Scholar 

  • Nolin, A. W., Steffen, K., and Dozier, J. (1994). Measuring and modeling the bidirectional reflectance of snow. In Proc. of the International Geoscience and Remote Sensing Symposium ’94, IEEE 94CH3378-7, pages 1919–1921, Pasadena, CA.

    Google Scholar 

  • Odermatt, D., Schl¨apfer, D., Lehning, M., Schwikowski, M., Kneub¨uhler, M., and Itten, K. I. (2005). Seasonal study of directional reflectance properties of snow. In EARSeL eProceedings, volume 4, pages 203–214.

    Google Scholar 

  • Painter, T. H. and Dozier, J. (2002). Measurements of the bidirectional reflectance of snow at fine spectral and angular resolution. In 70th Annual Meeting of the Western Snow Conference, page 70.

    Google Scholar 

  • Painter, T. H. and Dozier, J. (2004). Measurements of the hemispherical–directional reflectance of snow at fine spectral and angular resolution. J. Geophys. Res., 109(D18115).

    Google Scholar 

  • Painter, T. H., Dozier, J., Roberts, D. A., Davis, R. E., and Green, R. O. (2003a). Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data. Remote Sensing of Environment, 85:64–77.

    Article  Google Scholar 

  • Painter, T. H., Paden, B., and Dozier, J. (2003b). Automated spectro-goniometer: A spherical robot for the field measurement of the directional reflectance of snow. Review of Scientific Instruments, 74(12):5179–5188.

    Article  CAS  Google Scholar 

  • Painter, T. H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R. E., and Dozier, J. (2009). Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sensing of Environment, 113:868–879.

    Article  Google Scholar 

  • Peltoniemi, J. I. (2007). Spectropolarized ray-tracing simulations in densely packed particulate medium. J. Quant. Spectrosc. Radiat. Transfer, 108(2):180–196.

    Article  CAS  Google Scholar 

  • Peltoniemi, J. I. and Lumme, K. (1992). Light scattering by closely packed particulate media. J. Opt. Soc. Am. A, 9(8):1320–1326.

    Article  Google Scholar 

  • Peltoniemi, J. I., Lumme, K., Muinonen, K., and Irvine, W. M. (1989). Scattering of light by stochastically rough particles. Appl. Opt., 28(19):4088–4095.

    Article  CAS  Google Scholar 

  • Peltoniemi, J., Viljakainen, M., Levander, T., Hiltunen, S., Piironen, J., and N¨ar¨anen, J. (2002). Another field goniometer. In Abstracts of Third International Workshop

    Google Scholar 

  • on Multiangular Measurements and Models, page 42, Steamboat Springs, Colorado. Poster.

    Google Scholar 

  • Peltoniemi, J., Kaasalainen, S., N¨ar¨anen, J., Matikainen, L., and Piironen, J. (2005a). Measurement of directional and spectral signatures of light reflectance by snow. IEEE Transactions on Geoscience and Remote Sensing, 43(10):2294–2304.

    Google Scholar 

  • Peltoniemi, J., Kaasalainen, S., N¨ar¨anen, J., Rautiainen, M., Stenberg, P., Smolander, H., Smolander, S., and Voipio, P. (2005b). BRDF measurement of understory vegetation in pine forests: dwarf shrubs, lichen and moss. Remote Sensing of Environment, 94:343–354.

    Google Scholar 

  • Peltoniemi, J., Piironen, J., N¨ar¨anen, J., Suomalainen, J., Kuittinen, R., Honkavaara, E., and Markelin, L. (2007). Bidirectional reflectance spectrometry of gravel at the Sj¨okulla test field. ISPRS Journal of Photogrammetry and Remote Sensing, 62(6):434–446.

    Google Scholar 

  • Peltoniemi, J., Hakala, T., Suomalainen, J., and Puttonen, E. (2009). Polarised bidirectional reflectance factor measurements from snow, soil and gravel. J. Quant. Spectrosc. Radiat. Transfer, 110:1940–1953.

    Article  CAS  Google Scholar 

  • Perovich, D. K. (1990). Theoretical estimates of light reflection and transmission by spatially complex and temporally varying sea ice covers. J. Geophys. Res., 95(C6):9557–9567.

    Google Scholar 

  • Perovich, D. K. (1994). Light reflection from sea ice during the onset of melt. J. Geophys. Res., 99(C2):3351–3360.

    Google Scholar 

  • Pirazzini, R. (2008). Factors controlling the surface energy budget over snow and ice. PhD thesis, University of Helsinki, Faculty of Science, Department of Physics, Division of Atmospheric Sciences and Geophysics.

    Google Scholar 

  • Puttonen, E., Suomalainen, J., Hakala, T., and Peltoniemi, J. (2009). Measurement of reflectance properties of asphalt surfaces and their usability as reference targets for aerial photos. IEEE Transactions on Geoscience and Remote Sensing, 47(7):2330–2339.

    Article  Google Scholar 

  • Roesch, A., Wild, M., and Ohmura, A. (2001). Snow cover fraction in a general circulation model. In Beniston, M. and Verstraete, M. M., editors, Remote Sensing and Climate Simulations: Synergies and Limitations, Advances in Global Change Research, pages 203–232. Kluwer Academic Publishers, Dordrecht and Boston.

    Google Scholar 

  • Salminen, M., Pulliainen, J., Mets¨am¨aki, S., Kontu, A., and Suokanerva, H. (2009). The behaviour of snow and snow-free surface reflectance in boreal forests: Implications to the performance of snow covered area monitoring. Remote Sensing of Environment, 113:907–918.

    Google Scholar 

  • Schopfer, J. T. (2008). Spectrodirectional ground–based remote sensing using dual–view goniometry. PhD thesis, University of Zurich.

    Google Scholar 

  • Solberg, R., Hiltbrunner, D., Koskinen, J., Guneriussen, T., Rautiainen, K., and Hallikainen, M. (1997). Snow algorithms and products, review and recommendations for research and development. Report from SNOWTOOLS WP 410 924, Norwegian Computing Center, Oslo.

    Google Scholar 

  • Steffen, K. (1987). Bidirectional reflectance of snow at 500–600 nm. In Large Scale Effects of Seasonal Snow Cover (Proceedings of the Vancouver Symposium), number 166 in IAHS Publ.

    Google Scholar 

  • Stroeve, J., Box, J. E., Gao, F., Liang, S., Nolin, A., and Schaaf, C. (2005). Accuracy assessment of the MODIS 16-day albedo product for snow: comparisons with Greenland in situ measurements. Remote Sensing of Environment, 94:46–60.

    Article  Google Scholar 

  • Stroeve, J. C., Box, J. E., and Haran, T. (2006). Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet. Remote Sensing of Environment, 105:155–171.

    Article  Google Scholar 

  • Suomalainen, J., Hakala, T., Peltoniemi, J., and Puttonen, E. (2009a). Polarised multiangular reflectance measurements using Finnish Geodetic Institute field goniospectrometer. Sensors, 9(5):3891–3907.

    Article  Google Scholar 

  • Suomalainen, J., Hakala, T., Puttonen, E., and Peltoniemi, J. (2009b). Polarised bidirectional

    Google Scholar 

  • reflectance factor measurements from vegetated land surfaces. J. Quant. Spectrosc. Radiat. Transfer, 110:1044–1056.

    Google Scholar 

  • Tanikawa, T., Aoki, T., Hori, M., Hachikubo, A., and Aniya, M. (2006). Snow bidirectional reflectance model using non-spherical snow particles and its validation with field measurements. In EARSeL eProceedings, volume 5, pages 137–145.

    Google Scholar 

  • Tedesco, M. and Kokhanovsky, A. (2007). The semi-analytic snow retrieval algorithm and its application to MODIS data. Remote Sensing of Environment, 111:228–241.

    Article  Google Scholar 

  • Warren, S. G. (1982). Optical properties of snow. Reviews of Geophysics and Space Physics, 20(1):67–89.

    Article  Google Scholar 

  • Warren, S., B.-C.Gao, and Wiscombe, W. (1995). ftp//climate.gsfc.nasa.gov/pub/wiscombe/Refrac Index.

    Google Scholar 

  • Warren, S., Brandt, R., and Hinton, P. O. (1998). Effect of surface roughness on bidirectional reflectance of Antarctic snow. J. Geophys. Res. (Planets), 103(E11):25789–

    Google Scholar 

  • 25807.

    Google Scholar 

  • Widen, N. (2000). A description of the new FGI goniometer and quality analysis of experimental data. Photogrammetric Journal of Finland, 17(1):28.

    Google Scholar 

  • Wiscombe, W. and Warren, S. (1980). A model for spectral albedo of snow I: pure snow. J. Atmos. Sci., 37(12):2712–2733.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jouni I. Peltoniemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peltoniemi, J.I. et al. (2010). Reflectance of various snow types: measurements, modeling, and potential for snow melt monitoring. In: Kokhanovsky, A. (eds) Light Scattering Reviews 5. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10336-0_9

Download citation

Publish with us

Policies and ethics