Advertisement

A Statistical Model for Daylight Spectra

  • Martyn Williams
  • William A. P. Smith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5875)

Abstract

In this paper we present a statistical model, learnt from empirical data, which captures variations in the spectra of daylight. We demonstrate two novel techniques which use the model to constrain vision and graphics problems. The first uses the model generatively to render scenes using spectra which are constrained to be plausible. The second uses the model to solve the ill-posed problem of estimating high dimensional illumination spectra from one or more tristimulus images, such as might be observed over the course of a day.

Keywords

Optical Society Colour Constancy Correlate Color Temperature Calibration Material Time Lapse Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Valero, E., Nieves, J., Nascimento, S., Amano, K., Foster, D.: Recovering spectral data from natural scenes with an RGB digital camera and colored filters. Color Research and Application 32, 352–359 (2007)CrossRefGoogle Scholar
  2. 2.
    Park, J.I., Lee, M.H., Grossberg, M., Nayar, S.: Multispectral imaging using multiplexed illumination. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, pp. 1–8 (2007)Google Scholar
  3. 3.
    Blagg, A.S., Bishop, G.J., Killey, A., Porter, M.D.: Temporal performance of spectral matched filtering techniques. In: Proceedings of the SPIE, vol. 6741 (2007)Google Scholar
  4. 4.
    Karpouzli, E., Malthus, T.: The empirical line method for the atmospheric correction of ikonos imagery. International Journal of Remote Sensing 24, 1143–1150 (2003)CrossRefGoogle Scholar
  5. 5.
    Nieves, J., Plata, C., Valero, E., Romero, J.: Unsupervised illuminant estimation from natural scenes: an RGB digital camera suffices. Applied Optics 47, 3574–3584 (2008)CrossRefGoogle Scholar
  6. 6.
    Parkkinen, J.P.S., Hallikainen, J., Jaaskelainen, T.: Characteristic spectra of munsell colors. Journal of the Optical Society of America 6, 318–322 (1989)CrossRefGoogle Scholar
  7. 7.
    Judd, D.B., MacAdam, D.L., Wyzecki, G.: Spectral distribution of typical daylight as a function of correlated color temperature. Journal of the Optical Society of America 54, 1031–1040 (1964)CrossRefGoogle Scholar
  8. 8.
    Romero, J., García-Beltrán, A., Hernández-Andrés, J.: Linear bases for representation of natural and artificial illuminants. Journal of the Optical Society of America 14, 1007–1014 (1997)CrossRefGoogle Scholar
  9. 9.
    Hernández-Andrés, J., Romero, J., Nieves, J.L., Raymond, L., Lee, J.: Color and spectral analysis of daylight in southern europe. Journal of the Optical Society of America 18, 1325–1335 (2001)CrossRefGoogle Scholar
  10. 10.
    Bishop, G.J., Killey, A., Porter, M.D., Blagg, A.S.: Spectral tracking of objects in real time. In: Proceedings of the SPIE, vol. 7119 (2008)Google Scholar
  11. 11.
    Chiao, C.C., Osorio, D., Vorobyev, M., Cronin, T.W.: Characterization of natural illuminants in forests and the use of digital video data to reconstruct illuminant spectra. Journal of the Optical Society of America 17, 1713–1721 (2000)CrossRefGoogle Scholar
  12. 12.
    Hernández-Andrés, J., Romero, J., Raymond, L., Lee, J.: Colorimetric and spectroradiometric characteristics of narrow-field-of-view clear skylight in granada, spain. Journal of the Optical Society of America 18, 412–420 (2001)CrossRefGoogle Scholar
  13. 13.
    Hernández-Andrés, J., Nieves, J.L., Valero, E.M., Romero, J.: Spectral-daylight recovery by use of only a few sensors. Journal of the Optical Society of America 21, 13–23 (2004)CrossRefGoogle Scholar
  14. 14.
    Nieves, J.L., Valero, E.M., Nascimento, S.M.C., Hernández-Andrés, J., Romero, J.: Multispectral synthesis of daylight using a commercial digital ccd camera. Applied Optics 44, 5696–5703 (2005)CrossRefGoogle Scholar
  15. 15.
    Imai, F., Rosen, M., Berns, R.: Comparative study of metrics for spectral match quality. In: Proceedings of the First European Conference on Colour in Graphics, Imaging and Vision, pp. 492–496 (2002)Google Scholar
  16. 16.
    Finlayson, G.D., Hordley, S.D., Morovic, P.: Using the spectracube to build a multispectral image database. In: Proceedings of IS&T Conference on Color, Graphics, Imaging and Vision (2004)Google Scholar
  17. 17.
    Buchsbaum, G.: A spatial processor model for object colour perception. Journal of the Optical Society of America 310, 1–26 (1980)Google Scholar
  18. 18.
    Morrisey, D.: Sunrise, sunset, moonrise and moonset times (2009), http://www.sunrisesunsetmap.com/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Martyn Williams
    • 1
  • William A. P. Smith
    • 1
  1. 1.Department of Computer ScienceThe University of YorkUK

Personalised recommendations