Advertisement

Efficient Random Sampling for Nonrigid Feature Matching

  • Lixin Fan
  • Timo Pylvänäinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5875)

Abstract

This paper aims to match two sets of nonrigid feature points using random sampling methods. By exploiting the principle eigenvector of corres pondence-model-linkage, an adaptive sampling method is devised to efficiently deal with non-rigid matching problems.

Keywords

Random Model Uniqueness Constraint Adaptive Sampling Graph Match Thin Plate Spline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dellaert, F., Seitz, S.M., Thorpe, C.E., Thrun, S.: Structure from motion without correspondence. In: CVPR, pp. 2557–2564 (2000)Google Scholar
  2. 2.
    Torr, P.H., Davidson, C.: IMPSAC: Synthesis of importance sampling and random sample consensus. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 354–364 (2003)CrossRefGoogle Scholar
  3. 3.
    Hartley, R., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, Cambridge (2003)Google Scholar
  4. 4.
    Bujnak, M., Sára, R.: A robust graph-based method for the general correspondence problem demonstrated on image stitching. In: ICCV, pp. 1–8 (2007)Google Scholar
  5. 5.
    Caetano, T., Cheng, L., Le, Q., Smola, A.: Learning graph matching. In: IEEE International Conference on Computer Vision, ICCV (2007)Google Scholar
  6. 6.
    Chui, H.: A new algorithm for non-rigid point matching. In: CVPR, pp. 44–51 (2000)Google Scholar
  7. 7.
    Maciel, J., Costeira, J.P.: A global solution to sparse correspondence problems. IEEE Transactions on pattern Analysis and Machine Intelligence 25, 187–199 (2003)CrossRefGoogle Scholar
  8. 8.
    Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondence. In: CVPR, pp. 26–33 (2005)Google Scholar
  9. 9.
    Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: International Conference of Computer Vision (ICCV), vol. 2, pp. 1482–1489 (2005)Google Scholar
  10. 10.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Tordoff, B.J., Murray, D.W.: Guided-MLESAC: Faster image transform estimation by using matching priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1523–1535 (2005)CrossRefGoogle Scholar
  12. 12.
    Fan, L., Pylvänäinen, T.: Robust scale estimation from ensemble inlier sets for random sample consensus methods. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 182–195. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Patt. Anal. Mach. Intell. 18, 377–388 (1996)CrossRefGoogle Scholar
  14. 14.
    Gold, S., Rangarajan, A., ping Lu, C., Mjolsness, E.: New algorithms for 2d and 3d point matching: Pose estimation and correspondence. Pattern Recognition 31, 957–964 (1998)CrossRefGoogle Scholar
  15. 15.
    Caetano, T., Caelli, T., Schuurmans, D., Barone, D.: Graphical models and point pattern matching. IEEE Transactions on pattern Analysis and Machine Intelligence 10, 1646–1663 (2006)CrossRefGoogle Scholar
  16. 16.
    Cour, T., Srinivasan, P., Shi, J.: Balanced graph matching. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19, pp. 313–320. MIT Press, Cambridge (2007)Google Scholar
  17. 17.
    McAuley, J.J., Caetano, T.S., Smola, A.J.: Robust near-isometric matching via structured learning of graphical models. In: NIPS, pp. 1057–1064 (2008)Google Scholar
  18. 18.
    Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: Models and global optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)CrossRefGoogle Scholar
  20. 20.
    Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, pp. 1150–1157 (1999)Google Scholar
  21. 21.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Proceedings of the ninth European Conference on Computer Vision (2006)Google Scholar
  22. 22.
    Kuhn, H.W.: Variants of the hungarian method for assignment problems. Naval Research Logistic Quarterly 3, 253–258 (1956)CrossRefGoogle Scholar
  23. 23.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46, 668–677 (1999)CrossRefGoogle Scholar
  24. 24.
    Ng, A.Y., Zheng, A.X., Jordan, M.I.: Link analysis, eigenvectors and stability. In: IJCAI, pp. 903–910 (2001)Google Scholar
  25. 25.
    Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Comm. ACM 15, 11–15 (1972)CrossRefGoogle Scholar
  26. 26.
    Kultanen, P., Xu, L., Oja, E.: Randomized hough transform. In: Proceedings of the International Conference on Pattern Recognition, pp. 631–635 (1990)Google Scholar
  27. 27.
    Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Lixin Fan
    • 1
  • Timo Pylvänäinen
    • 1
  1. 1.Nokia Research CenterTampereFinland

Personalised recommendations