Fast Occlusion Sweeping

  • Mayank Singh
  • Cem Yuksel
  • Donald House
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5875)

Abstract

While realistic illumination significantly improves the visual quality and perception of rendered images, it is often very expensive to compute. In this paper, we propose a new algorithm for embedding a global ambient occlusion computation within the fast sweeping algorithm while determining isosurfaces. With this method we can approximate ambient occlusion for rendering volumetric data with minimal additional cost over fast sweeping. We compare visualizations rendered with our algorithm to visualizations computed with only local shading, and with a ambient occlusion calculation using Monte Carlo sampling method. We also show how this method can be used for approximating low frequency shadows and subsurface scattering.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Qiu, F., Xu, F., Fan, Z., Neophytos, N.: Lattice-based volumetric global illumination. IEEE Transactions on Visualization and Computer Graphics 13, 1576–1583 (2007)CrossRefGoogle Scholar
  2. 2.
    Stewart, A.J.: Vicinity shading for enhanced perception of volumetric data. IEEE Visualization (2003)Google Scholar
  3. 3.
    Tarini, M., Cignoni, P., Montani, C.: Ambient occlusion and edge cueing for enhancing real time molecular visualization. IEEE Transactions on Visualization and Computer Graphics 12, 1237–1244 (2006)CrossRefGoogle Scholar
  4. 4.
    Weigle, C., Banks, D.: A comparison of the perceptual benefits of linear perspective and physically-based illumination for display of dense 3d streamtubes. IEEE Transactions on Visualization and Computer Graphics 14, 1723–1730 (2008)CrossRefGoogle Scholar
  5. 5.
    Zhao, H.: A fast sweeping method for eikonal equations. Mathematics of Computation 74, 603–627 (2005)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci., 1591–1595 (1996)Google Scholar
  7. 7.
    Zhukov, S., Inoes, A., Kronin, G.: An ambient light illumination model. In: Drettakis, G., Max, N. (eds.) Rendering Techniques 1998. Eurographics, pp. 45–56. Springer, Wien (1998)Google Scholar
  8. 8.
    Pharr, M., Green, S.: Ambient Occlusion. In: GPU Gems, pp. 667–692. Addison-Wesley, Reading (2004)Google Scholar
  9. 9.
    Sattler, M., Sarlette, R., Zachmann, G., Klein, R.: Hardware-accelerated ambient occlusion computation. In: 9th Int’l Fall Workshop Vision, Modeling, And Visualization (VMV), Stanford, California, pp. 119–135 (2004)Google Scholar
  10. 10.
    Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. 21, 527–536 (2002)CrossRefGoogle Scholar
  11. 11.
    Mei, C., Shi, J., Wu, F.: Rendering with spherical radiance transport maps. Computer Graphics Forum 23, 281–290 (2004)CrossRefGoogle Scholar
  12. 12.
    Kontkanen, J., Laine, S.: Ambient occlusion fields. In: Proceedings of ACM SIGGRAPH 2005 Symposium on Interactive 3D Graphics and Games, pp. 41–48. ACM Press, New York (2005)CrossRefGoogle Scholar
  13. 13.
    Malmer, M., Malmer, F., Assarsson, U., Holzschuch, N.: Fast precomputed ambient occlusion for proximity shadows. Journal of Graphics Tools 12, 59–71 (2007)Google Scholar
  14. 14.
    Bunnell, M.: Dynamic Ambient Occlusion and Indirect Lighting. In: GPU Gems 2, Pearson Education, Inc, London (2005)Google Scholar
  15. 15.
    Shanmugam, P., Arikan, O.: Hardware accelerated ambient occlusion techniques on gpus. In: I3D 2007: Proceedings of the 2007 symposium on Interactive 3D graphics and games, pp. 73–80. ACM, New York (2007)CrossRefGoogle Scholar
  16. 16.
    Ritschel, T., Grosch, T., Seidel, H.-P.: Approximating dynamic global illumination in image space. In: I3D 2009: Proceedings of the 2009 symposium on Interactive 3D graphics and games, pp. 75–82. ACM, New York (2009)CrossRefGoogle Scholar
  17. 17.
    Salama, C.R.: Gpu-based monte-carlo volume raycasting. In: PG 2007: Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, Washington, DC, USA, pp. 411–414. IEEE Computer Society, Los Alamitos (2007)CrossRefGoogle Scholar
  18. 18.
    Tarini, M., Cignoni, P., Montani, C.: Ambient occlusion and edge cueing to enhance real time molecular visualization (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mayank Singh
    • 1
  • Cem Yuksel
    • 1
  • Donald House
    • 2
  1. 1.Texas A&M University 
  2. 2.Clemson University 

Personalised recommendations