Different Perspectives on Technology Acceptance: The Role of Technology Type and Age

  • Katrin Arning
  • Martina Ziefle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5889)


Although eHealth technologies offer an enormous potential to improve healthcare, the knowledge about key determinants of acceptance for eHealth technology is restricted. While the underlying technology of eHealth technologies and Information and Communication technology (ICT) is quite similar, utilization contexts and using motives are quite different. In order to explore the role of technology type on acceptance, we contrasted central application characteristics of both technology types using the scenario technique. A questionnaire was administered (n = 104) measuring individual variables (age, gender) and attitudes regarding an eHealth application (blood sugar meter) in contrast to an ICT device (Personal Digital Assistant, PDA). Older users basically approved the utilization of health-related technologies and perceived lower usability barriers. In addition, we identified main utilization motives of eHealth technology and technology-specific acceptance patterns, especially regarding issues of data safety in the eHealth context. Effects of age and gender in acceptance ratings suggest a differential perspective on eHealth acceptance. Finally, practical interventions were derived in order to support eHealth device design and to promote acceptance of eHealth technology.


technology eHealth ICT acceptance user diversity age gender usability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Giannakouris, K.: Ageing characterises the demographic perspectives of the European societies. Eurostat 72 (2008)Google Scholar
  2. 2.
    Pötzsch, O., Sommer, B.: Bevölkerung Deutschlands bis 2050 - Ergebnisse der 10. koordinierten Bevölkerungsvorausberechnung. Wiesbaden: Pressestelle Statistisches Bundesamt (2003)Google Scholar
  3. 3.
    Jacobzone, S., Oxley, H.: Ageing and Health Care Costs. Internationale Politik und Gesellschaft Online (International Politics and Society) 1 (2002)Google Scholar
  4. 4.
    Wittenberg, R., Comas-Herrera, A., Pickard, L., Hancock, R.: Future Demand for Long-Term Care in England. PSSRU Research Summary (2006)Google Scholar
  5. 5.
    Demiris, G.: e-health: Current Status and Future Trends in the EU and the US. IOS Press, The Netherlands (2004)Google Scholar
  6. 6.
    Tan, J.K.H.: Healthcare information systems & informatics: research and practices, Hershey (2008)Google Scholar
  7. 7.
    Jähn, K., Nagel, E.: e-Health. Springer, Berlin (2004)Google Scholar
  8. 8.
    Leonhardt, S.: Personal Healthcare Devices. In: Mekherjee, S., et al. (eds.) Malware: Hardware Technology Drivers of Ambient Intelligence, pp. 349–370. Springer, Dordrecht (2005)Google Scholar
  9. 9.
    Holzinger, A., Schaupp, K., Eder-Halbedl, W.: An Investigation on Acceptance of Ubiquitous Devices for the Elderly in a Geriatric Hospital Environment: Using the Example of Person Tracking. In: Proceedings of the 11th international conference on Computers Helping People with Special Needs. Springer, Linz (2008)Google Scholar
  10. 10.
    Davis, F.D.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly 13, 319–337 (1989)CrossRefGoogle Scholar
  11. 11.
    Ajzen, I., Fishbein, M.: Understanding Attitudes and Predicting Social Behavior. Prentice-Hall, Englewood Cliffs (1980)Google Scholar
  12. 12.
    Venkatesh, V., Davis, F.D.: A Model of the Antecedents of Perceived Ease of Use: Development and Test. Decision Sciences 27, 451–481 (1996)CrossRefGoogle Scholar
  13. 13.
    Schwarz, A., Chin, W.: Looking Forward: Toward an Understanding of the Nature and Definition of IT Acceptance. Journal of the Association for Information Systems 8, 232–243 (2007)Google Scholar
  14. 14.
    Arning, K., Ziefle, M.: Understanding age differences in PDA acceptance and performance. Computers in Human Behavior 23, 2904–2927 (2007)CrossRefGoogle Scholar
  15. 15.
    Venkatesh, V., Davis, F.D.: A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science 46, 186–204 (2000)CrossRefGoogle Scholar
  16. 16.
    Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: Toward a unified view. MIS Quarterly 27, 3 (2003)Google Scholar
  17. 17.
    Wilson, E.V., Lankton, N.K.: Modeling patients’ acceptance of provider-delivered e-health. Journal of the American Medical Informatics Association 11, 241–248 (2004)CrossRefGoogle Scholar
  18. 18.
    Stronge, A.J., Rogers, W.A., Fisk, A.D.J.: Human factors considerations in implementing telemedicine systems to accommodate older adults. Telemed Telecare 13, 1–3 (2007)CrossRefGoogle Scholar
  19. 19.
    Jakobs, E.-M., Lehnen, K., Walter, M., Vogt, O., Ziefle, M.: Alter und Technik. Eine Studie zur altersbezogenen Wahrnehmung und Gestaltung von Technik. Edition Wissenschaft, Aprimus (2008)Google Scholar
  20. 20.
    Wirtz, S., Jakobs, E.-M., Ziefle, M.: Age-specific issues of software interfaces. In: 9th International Conference on Work With Computer Systems (WWCS), Beijing, China (2009)Google Scholar
  21. 21.
    Gaul, S., Ziefle, M.: Smart home technologies: insights into generation-specific acceptance motives. In: USAB, Linz, Austria (submitted)Google Scholar
  22. 22.
    Ziefle, M.: Age perspectives on the usefulness on e-health applications. In: International Conference on Health Care Systems, Ergonomics, and Patient Safety (HEPS), Straßbourg, France (2008)Google Scholar
  23. 23.
    Rogers, W., Cabrera, E.F., Walker, N., Gilbert, D.K., Fisk, A.D.: A survey of automatic teller machine usage across the adult lifespan. Human Factors 38, 156–186 (1996)CrossRefGoogle Scholar
  24. 24.
    Marcellini, F., Mollenkopf, H., Spazzafumo, L., Ruoppila, I.: Acceptance and Use of Technological Solutions by the Elderly in the Outdoor Environment: Findings from a European Survey. Zeitschrift für Gerontologie und Geriatrie 33, 169–177 (2000)CrossRefGoogle Scholar
  25. 25.
    Bay, S., Ziefle, M.: Design for all: User characteristics to be considered for the design of phones with hierarchical menu structures. In: Luczak, H., Zink, K.J. (eds.) Human factors in organizational design and management, pp. 503–508. IEA Press, Santa Monica (2003)Google Scholar
  26. 26.
    Ziefle, M., Bay, S.: Transgenerational Designs in Mobile Technology. In: Lumsden, J. (ed.) Handbook of Research on User Interface Design and Evaluation for Mobile Technology, pp. 122–140. IGI Global (2008)Google Scholar
  27. 27.
    Ziefle, M., Bay, S.: How older adults meet complexity: Aging effects on the usability of different mobile phones. Behaviour and Information Technology 24, 375–389 (2005)CrossRefGoogle Scholar
  28. 28.
    Arning, K., Ziefle, M.: Barriers of Information Access in Small Screen Device Applications: The Relevance of User Characteristics for a Transgenerational Design. In: Stephanidis, C., Pieper, M. (eds.) ERCIM Ws UI4ALL 2006. LNCS, vol. 4397, pp. 117–136. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Arning, K., Ziefle, M.: What older user expect from mobile devices: An empirical survey. In: Pikaar, R.N., Konigsveld, E.A., Settels, P.J. (eds.) Proceedings of the 16th World Congress on Ergonomics (IEA). Elsevier, Amsterdam (2006)Google Scholar
  30. 30.
    Czaja, S.J., Sharit, J.: Age Differences in Attitudes Toward Computers. Journal of Gerontology 5, 329–340 (1998)Google Scholar
  31. 31.
    Ellis, D.R., Allaire, J.C.: Modelling computer interest in older adults: The role of age, education, computer knowledge and computer anxiety. Human Factors 41, 345–364 (1999)CrossRefGoogle Scholar
  32. 32.
    Freudenthal, D.: Age differences in the performance of information retrieval tasks. Behaviour and Information Technology 20, 9–22 (2001)CrossRefGoogle Scholar
  33. 33.
    Arning, K., Ziefle, M.: Effects of cognitive and personal factors on PDA menu navigation performance. Behavior and Information Technology (in press)Google Scholar
  34. 34.
    Arning, K., Ziefle, M.: Understanding age differences in PDA acceptance and performance. Computers in Human Behavior 23, 2904–2927 (2007)CrossRefGoogle Scholar
  35. 35.
    Holzinger, A., Searle, G., Nischelwitzer, A.: On some Aspects of Improving Mobile Applications for the Elderly. In: Stephanidis, C. (ed.), pp. 923–932. Springer, Heidelberg (2007)Google Scholar
  36. 36.
    Melenhorst, A.S., Rogers, W.A., Caylor, E.C.: The use of communication technologies by older adults: Exploring the benefits from an users perspective. In: Proc. of the Human Factors and Ergonomics Society 45th Annual Meeting (2001)Google Scholar
  37. 37.
    Kelley, C., Charness, N.: Issues in training older adults to use computers. Behaviour and Information Technology 14, 107–120 (1995)CrossRefGoogle Scholar
  38. 38.
    Levine, T., Donitsa-Schmidt, S.: Computer use, confidence, attitudes and knowledge: a causal analysis. Computers in Human Behavior 1, 125–146 (1998)CrossRefGoogle Scholar
  39. 39.
    Arning, K., Ziefle, M.: Ask and you will receive: Training older adults to use a PDA in an active learning environment. International Journal of Mobile Human-Computer Interaction (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Katrin Arning
    • 1
  • Martina Ziefle
    • 1
  1. 1.Human Technology Centre (HumTec)RWTH Aachen UniversityAachenGermany

Personalised recommendations