Advertisement

Root Water Transport Under Waterlogged Conditions and the Roles of Aquaporins

  • Helen Bramley
  • Steve Tyerman
Chapter

Abstract

Water flow through plants roots can be affected when the soil is waterlogged and oxygen deficient. For species not adapted to these conditions, water flow usually decreases within minutes to days, depending on the oxygen concentration in the root and rhizosphere. During this time, the decrease in water flow is attributed to decreased root hydraulic conductance, through an inhibition of plasma-membrane aquaporins. There is increasing evidence that aquaporins may also be involved in the transport of gases, end products of anaerobic respiration, and signalling molecules; all of which are relevant to oxygen-deficient conditions. Eventually, primary roots die if continually starved of oxygen, but may be replaced with adventitious roots that can maintain the supply of water to the shoot. Here, we review the effects of waterlogging and oxygen deficiency on root hydraulic conductance and aquaporin activity.

Keywords

Nitric Oxide Hydraulic Conductance Adventitious Root Water Permeability Oxygen Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aguilar EA, Turner DW et al (2003) Oxygen distribution and movement, respiration and nutrient loading in banana roots (Musa spp. L.) subjected to aerated and oxygen-depleted environments. Plant Soil 253(1):91–102CrossRefGoogle Scholar
  2. Albrecht G, Mustroph A (2003) Localization of sucrose synthase in wheat roots: increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta 217:252–260PubMedGoogle Scholar
  3. Alleva K, Niemietz CM et al (2006) Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations. J Exp Bot 57(3):609–621PubMedCrossRefGoogle Scholar
  4. Ampilogova Y, Zhestkova I et al (2006) Redox modulation of osmotic water permeability in plasma membranes isolated from roots and shoots of pea seedlings. Russ J Plant Physiol 53(5):622–628CrossRefGoogle Scholar
  5. Amtmann A, Blatt MR (2009) Regulation of macronutrient transport. New Phytol 181(1):35–52PubMedCrossRefGoogle Scholar
  6. Andersen P, Lombard P et al (1984) Effect of root anaerobiosis on the water relations of several Pyrus species. Physiol Plant 62(2):245–252CrossRefGoogle Scholar
  7. Armstrong J, Armstrong W (2005) Rice: sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann Bot 96(4):625–638PubMedCrossRefGoogle Scholar
  8. Armstrong W, Beckett PM et al (1991) Modelling and other aspects of root aeration. In: Jackson MB, Davies DD, Lambers H (eds) Plant Life Under Oxygen Stress. SPB Academic, The Hague, The Netherlands, pp 267–282Google Scholar
  9. Atwell BJ (1991) Factors which affect the growth of grain legumes on a solonized brown soil. I. Genotypic responses to soil physical factors. Aust J Agric Res 42(1):95–105Google Scholar
  10. Azad AK, Sawa Y et al (2004) Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals. Plant Cell Physiol 45(5):608–617PubMedCrossRefGoogle Scholar
  11. Azaizeh H, Gunsé B et al (1992) Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings. Plant Physiol 99:886–894PubMedCrossRefGoogle Scholar
  12. Azaizeh H, Steudle E (1991) Effects of salinity on water transport of excised maize (Zea mays L.) roots. Plant Physiol 97:1136–1145PubMedCrossRefGoogle Scholar
  13. Babourina O, Hawkins B et al (2001) K+ transport by Arabidopsis root hairs at low pH. Funct Plant Biol 28(7):637–643CrossRefGoogle Scholar
  14. Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59(1):313–339PubMedCrossRefGoogle Scholar
  15. Barlow PW (1994) The origin, diversity and biology of shoot-borne roots. In: Davis TD, Haissig BE (eds) Biology of adventitious root formation, vol 62. Plenum, New YorkGoogle Scholar
  16. Baxter-Burrell A, Yang Z et al (2002) RopGAP4-Dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296(5575):2026–2028PubMedCrossRefGoogle Scholar
  17. Beitz E, Wu B et al (2006) Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc Natl Acad Sci USA 103(2):269–274PubMedCrossRefGoogle Scholar
  18. Bertl A, Kaldenhoff R (2007) Function of a separate NH3-pore in Aquaporin TIP2;2 from wheat. FEBS lett 581(28):5413–5417PubMedCrossRefGoogle Scholar
  19. Biemelt S, Keetman U et al (2000) Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. Plant Cell Environ 23(2):135–144CrossRefGoogle Scholar
  20. Bienert G, Thorsen M et al (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6(1):26PubMedCrossRefGoogle Scholar
  21. Bienert GP, Moller ALB et al (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282(2):1183–1192PubMedCrossRefGoogle Scholar
  22. Birner TP, Steudle E (1993) Effects of anaerobic conditions on water and solute relations, and on active transport in roots of maize (Zea mays L.). Planta 190:474–483CrossRefGoogle Scholar
  23. Blokhina O, Virolainen E et al (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2):179–194PubMedCrossRefGoogle Scholar
  24. Blokhina OB, Virolainen E et al (2000) Antioxidant status of anoxia-tolerant and -intolerant plant species under anoxia and reaeration. Physiol Plant 109(4):396–403CrossRefGoogle Scholar
  25. Boursiac Y, Boudet J et al (2008) Stimulus-induced down regulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. Plant J 56(2):207–218PubMedCrossRefGoogle Scholar
  26. Bradford KJ, Hsiao TC (1982) Stomatal behaviour and water relations of waterlogged tomato plants. Plant Physiol 70:1508–1513PubMedCrossRefGoogle Scholar
  27. Bramley H (2006) Water flow in the roots of three crop species: the influence of root structure, aquaporin activity and waterlogging. PhD thesis, Plant Biology, The University of Western Australia, Crawley, WA, AustraliaGoogle Scholar
  28. Bramley H, Turner DW et al (2007) Water flow in the roots of crop species: The influence of root structure, aquaporin activity, and waterlogging. Adv Agron 96:133–196CrossRefGoogle Scholar
  29. Bramley H, Turner NC et al (2009) Roles of morphology, anatomy and aquaporins in determining contrasting hydraulic behavior of roots. Plant Physiol 150:1–17CrossRefGoogle Scholar
  30. Bramley H, Turner NC et al (2010) Contrasting influence of mild hypoxia on hydraulic properties of cells and roots of wheat and lupin. Funct Plant Biol (in press)Google Scholar
  31. Britto D, Kronzucker H (2006) Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport. Trends Plant Sci 11:529–534PubMedCrossRefGoogle Scholar
  32. Britto D, Ruth T et al (2004) Cellular and whole-plant chloride dynamics in barley: insights into chloride-nitrogen interactions and salinity responses. Planta 218:615–622PubMedCrossRefGoogle Scholar
  33. Buwalda F, Thomson CJ et al (1988) Hypoxia induces membrane depolarization and potassium loss from wheat roots but does not increase their permeability to sorbitol. J Exp Bot 39(206):1169–1183CrossRefGoogle Scholar
  34. Cannell RQ, Jackson MB (1981) Alleviating aeration stresses. In: Arkin GF, Taylor HM (eds) Modifying the root environment to reduce crop stress. American Society of Agricultural Engineers, St. Joseph, Michigan, pp 141–192Google Scholar
  35. Chaumont F, Barrieu F et al (2000) Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol 122:1025–1034PubMedCrossRefGoogle Scholar
  36. Chaumont F, Barrieu F et al (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125(3):1206–1215PubMedCrossRefGoogle Scholar
  37. Choi W-G, Roberts DM (2007) Arabidopsis NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress. J Biol Chem 282(33):24209–24218PubMedCrossRefGoogle Scholar
  38. Chrispeels MJ, Agre P (1994) Aquaporins: water channel proteins of plant and animal cells. Trends Biochem Sci 19:421–425PubMedCrossRefGoogle Scholar
  39. Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36CrossRefGoogle Scholar
  40. Colmer TD, Bloom AJ (1998) A comparison of NH4+ and NO3 net fluxes along roots of rice and maize. Plant Cell Environ 21(2):240–246CrossRefGoogle Scholar
  41. Danielson J, Johanson U (2008) Unexpected complexity of the Aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8(1):45PubMedCrossRefGoogle Scholar
  42. Day DA, Poole PS et al (2001) Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules. Cell Mol Life Sci 58(1):61–71PubMedCrossRefGoogle Scholar
  43. Demidchik V, Shabala SN et al (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant J 49(3):377–386PubMedCrossRefGoogle Scholar
  44. Dennis ES, Dolferus R et al (2000) Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot 51(342):89–97PubMedCrossRefGoogle Scholar
  45. Dordas C (2009) Nonsymbiotic hemoglobins and stress tolerance in plants. Plant Sci 176(4):433–440CrossRefGoogle Scholar
  46. Dracup M, Turner NC et al (1998) Responses to abiotic stress. In: Gladstones JS, Atkins CA, Hamblin J (eds) Lupins As Crop Plants: Biology, Production and Utilisation. CAB International, Oxon, pp 227–262Google Scholar
  47. Drew MC (1992) Soil aeration and plant root metabolism. Soil Sci 154(4):259–268CrossRefGoogle Scholar
  48. Drew MC (1997) Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250PubMedCrossRefGoogle Scholar
  49. Dynowski M, Schaaf G et al (2008) Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochem J 414(1):53–61PubMedCrossRefGoogle Scholar
  50. Echevarria M, Munoz-Cabello AM et al (2007) Development of cytosolic hypoxia and HIF stabilization are facilitated by aquaporin 1 expression. J Biol Chem 282(41):30207–30215PubMedCrossRefGoogle Scholar
  51. Else MA, Coupland D et al (2001) Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap. Physiol Plant 111:46–54CrossRefGoogle Scholar
  52. Enstone DE, Peterson CA (2005) Suberin lamella development in maize seedling roots grown in aerated and stagnant conditions. Plant Cell Environ 28:444–455CrossRefGoogle Scholar
  53. Etherington JR (1984) Comparative studies of plant growth and distribution in relation to waterlogging: X. Differential formation of adventitious roots and their experimental excision in Epilobium Hirsutum and Chamerion Angustifolium. J Ecol 72(2):389–404CrossRefGoogle Scholar
  54. Everard JD, Drew MC (1989) Mechanisms controlling changes in water movement through the roots of Helianthus annuus L. during continuous exposure to oxygen deficiency. J Exp Bot 40(210):95–104CrossRefGoogle Scholar
  55. Fan M, Bai R et al (2007) Aerenchyma formed under phosphorus deficiency contributes to the reduced root hydraulic conductivity in maize roots. J Integr Biol 49(5):598–604CrossRefGoogle Scholar
  56. Felle HH (2005) pH regulation in anoxic plants. Ann Bot 96(4):519–532PubMedCrossRefGoogle Scholar
  57. Fetter K, Van Wilder V et al (2004) Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell 16(1):215–228PubMedCrossRefGoogle Scholar
  58. Fischer M, Kaldenhoff R (2008) On the pH regulation of plant aquaporins. J Biol Chem 283(49):33889–33892PubMedCrossRefGoogle Scholar
  59. Flexas J, Ribas-Carbo M et al (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48(3):427–439PubMedCrossRefGoogle Scholar
  60. Forrest K, Bhave M (2008) The PIP and TIP aquaporins in wheat form a large and diverse family with unique gene structures and functionally important features. Funct Integr Genomics 8(2):115–133PubMedCrossRefGoogle Scholar
  61. Fouquet R, Léon C et al (2008) Identification of grapevine aquaporins and expression analysis in developing berries. Plant Cell Rep 27(9):1541–1550PubMedCrossRefGoogle Scholar
  62. Fukao T, Bailey-Serres J (2008) Ethylene – a key regulator of submergence responses in rice. Plant Sci 175(1–2):43–51CrossRefGoogle Scholar
  63. Garnczarska M (2005) Response of the ascorbate-glutathione cycle to re-aeration following hypoxia in lupine roots. Plant Physiol Biochem 43(6):583–590PubMedCrossRefGoogle Scholar
  64. Garthwaite AJ, Steudle E et al (2006) Water uptake by roots of Hordeum marinum: formation of a barrier to radial O2 loss does not affect root hydraulic conductivity. J Exp Bot 57(3):655–664PubMedCrossRefGoogle Scholar
  65. Gerbeau P, Amodeo G et al (2002) The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant J 30(1):71–81PubMedCrossRefGoogle Scholar
  66. Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47CrossRefGoogle Scholar
  67. Gibbs J, Turner DW et al (1998) Response to oxygen deficiency in primary maize roots. II. Development of oxygen deficiency in the stele has limited short-term impact on radial hydraulic conductivity. Aust J Plant Physiol 25:759–763CrossRefGoogle Scholar
  68. Gloser V, Zwieniecki MA et al (2007) Dynamic changes in root hydraulic properties in response to nitrate availability. J Exp Bot 58(10):2409–2415PubMedCrossRefGoogle Scholar
  69. Goggin DE, Colmer TD (2005) Intermittent anoxia induces oxidative stress in wheat seminal roots: assessment of the antioxidant defence system, lipid peroxidation and tissue solutes. Funct Plant Biol 32(6):495–506CrossRefGoogle Scholar
  70. Gorska A, Ye Q et al (2008a) Nitrate control of root hydraulic properties in plants: translating local information to whole plant response. Plant Physiol 148(2):1159–1167PubMedCrossRefGoogle Scholar
  71. Gorska A, Zwieniecka A et al (2008b) Nitrate induction of root hydraulic conductivity in maize is not correlated with aquaporin expression. Planta 228(6):989–998PubMedCrossRefGoogle Scholar
  72. Gout E, Boisson AM et al (2001) Origin of the cytoplasmic pH changes during anaerobic stress in higher plant cells. Carbon-13 and phosphorous-31 nuclear magnetic resonance studies. Plant Physiol 125(2):912–925PubMedCrossRefGoogle Scholar
  73. Grabov A, Bottger M (1994) Are redox reactions involved in regulation of K+ channels in the plasma membrane of Limnobium stoloniferum root hairs? Plant Physiol 105(3):927–935PubMedGoogle Scholar
  74. Greacen EL, Ponsana P et al (1976) Resistance to water flow in the roots of cereals. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life, vol 19. Springer, Berlin, pp 86–100Google Scholar
  75. Greenway H, Armstrong W et al (2006) Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Ann Bot 98(1):9–32PubMedCrossRefGoogle Scholar
  76. Greenway H, Gibbs J (2003) Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol 30:999CrossRefGoogle Scholar
  77. Greenway H, Waters I et al (1992) Effects of anoxia on uptake and loss of solutes in roots of wheat. Aust J Plant Physiol 19:233–247CrossRefGoogle Scholar
  78. Guenther JF, Chanmanivone N et al (2003) Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell 15(4):981–991PubMedCrossRefGoogle Scholar
  79. Hanba YT, Shibasaka M et al (2004) Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimillation in the leaves of transgenic rice plants. Plant Cell Physiol 45(5):521–529PubMedCrossRefGoogle Scholar
  80. Harrington CA (1987) Responses of red alder and black cottonwood seedlings to flooding. Physiol Plant 69(1):35–48CrossRefGoogle Scholar
  81. Hartje S, Zimmermann S et al (2000) Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta 210(5):723–731PubMedCrossRefGoogle Scholar
  82. Hedfalk K, Tornroth-Horsefield S et al (2006) Aquaporin gating. Curr Opin Struct Biol 16(4):447–456PubMedCrossRefGoogle Scholar
  83. Henzler T, Steudle E (2000) Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J Exp Bot 51(353):2053–2066PubMedCrossRefGoogle Scholar
  84. Henzler T, Ye Q et al (2004) Oxidative gating of water channels (aquaporins) in Chara by hydroxyl radicals. Plant Cell Environ 27:1184–1195CrossRefGoogle Scholar
  85. Hohl M, Schopfer P (1995) Rheological analysis of viscoelastic cell wall changes in maize coleoptiles as affected by auxin and osmotic stress. Physiol Plant 94(3):499–505CrossRefGoogle Scholar
  86. Holm LM, Jahn TP et al (2005) NH3 and NH4 + permeability in aquaporin-expressing Xenopus oocytes. Pflugers Archiv 450(6):415–428PubMedCrossRefGoogle Scholar
  87. Horemans N, Asard H et al (1998) Carrier mediated uptake of dehydroascorbate into higher plant plasma membrane vesicles shows trans-stimulation. FEBS lett 421(1):41–44PubMedCrossRefGoogle Scholar
  88. Horemans N, Foyer CH et al (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5(6):263–267PubMedCrossRefGoogle Scholar
  89. Huang S, Colmer TD et al (2008) Does anoxia tolerance involve altering the energy currency towards PPi? Trends Plant Sci 13(5):221–227PubMedCrossRefGoogle Scholar
  90. Igamberdiev AU, Hill RD (2009) Plant mitochondrial function during anaerobiosis. Ann Bot 103(2):259–268PubMedCrossRefGoogle Scholar
  91. Insalud N, Bell RW et al (2006) Morphological and physiological responses of rice (Oryza sativa) to limited phosphorus supply in aerated and stagnant solution culture. Ann Bot 98(5):995–1004PubMedCrossRefGoogle Scholar
  92. Jackson MB (2002) Long-distance signalling from roots to shoots assessed: the flooding story. J Exp Bot 53(367):175–181PubMedCrossRefGoogle Scholar
  93. Jackson MB, Davies WJ et al (1996) Pressure-flow relationships, xylem solutes and root hydraulic conductance in flooded tomato plants. Ann Bot 77:17–24CrossRefGoogle Scholar
  94. Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90(3):301–313PubMedCrossRefGoogle Scholar
  95. Jensen MX, Rvthlisberger U et al (2005) Hydroxide and proton migration in aquaporins. Biophys J 89(3):1744–1759PubMedCrossRefGoogle Scholar
  96. Johanson U, Gustavsson S (2002) A new subfamily of major intrinsic proteins in plants. Mol Biol Evol 19(4):456–461PubMedGoogle Scholar
  97. Johanson U, Karlsson M et al (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126(4):1358–1369PubMedCrossRefGoogle Scholar
  98. Johansson I, Karlsson M et al (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10(3):451–459PubMedCrossRefGoogle Scholar
  99. Johansson I, Larsson C et al (1996) The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. Plant Cell 8:1181–1191PubMedCrossRefGoogle Scholar
  100. Kalashnikov Y, Balakhnina T et al (1994) The effect of soil hypoxia on oxygen activation and the enzyme-system protecting barley roots and leaves against oxygen destruction. Russ J Plant Physiol 41:512–516Google Scholar
  101. Kamaluddin M, Zwiazek JJ (2002) Ethylene enhances water transport in hypoxic aspen. Plant Physiol 128:962–969PubMedCrossRefGoogle Scholar
  102. Kato-Noguchi H (2000) Abscisic acid and hypoxic induction of anoxia tolerance in roots of lettuce seedlings. J Exp Bot 51(352):1939–1944PubMedCrossRefGoogle Scholar
  103. Kato-Noguchi H, Ohashi C (2006) Effects of anoxia on amino acid levels in rice coleoptiles. Plant Prod Sci 9(4):383–387CrossRefGoogle Scholar
  104. Kennedy RA, Rumpho ME et al (1992) Anaerobic metabolism in plants. Plant Physiol 100(1):1–6PubMedCrossRefGoogle Scholar
  105. Kirch H-H, Vera-Estrella R et al (2000) Expression of water channel proteins in Mesembryanthemum crystallinum. Plant Physiol 123(1):111–124PubMedCrossRefGoogle Scholar
  106. Koncalová H (1990) Anatomical adaptations to waterlogging in roots of wetland graminoids: limitations and drawbacks. Aquat Bot 38(1):127–134CrossRefGoogle Scholar
  107. Kovar JL, Kuchenbuch RO (1994) Commercial importance of adventitious rooting to agronomy. In: Davis TD, Haissig BE (eds) Biology of aventitious root formation, vol 62. Plenum, New YorkGoogle Scholar
  108. Kozela C, Regan S (2003) How plants make tubes. Trends Plant Sci 8(4):159–164PubMedCrossRefGoogle Scholar
  109. Kramer PJ (1933) The intake of water through dead root systems and its relation to the problem of absorption by transpiring plants. Am J Bot 20(7):481–492CrossRefGoogle Scholar
  110. Kramer PJ (1949) Plant and soil water relationships. McGraw-Hill, New YorkGoogle Scholar
  111. Kramer PJ (1983) Water relations of plants. Academic, New YorkGoogle Scholar
  112. Krugel U, Veenhoff LM et al (2008) Transport and sorting of the Solanum tuberosum sucrose transporter SUT1 is affected by posttranslational modification. Plant Cell 20(9):2497–2513PubMedCrossRefGoogle Scholar
  113. Kuiper P, Walton C et al (1994) Effect of hypoxia on ion uptake by nodal and seminal wheat roots. Plant Physiol Biochem 32:267–276Google Scholar
  114. Libourel IGL, van Bodegom PM et al (2006) Nitrite reduces cytoplasmic acidosis under anoxia. Plant Physiol 142(4):1710–1717PubMedCrossRefGoogle Scholar
  115. Liu H-Y, Sun W-N et al (2006) Co-regulation of water channels and potassium channels in rice. Physiol Plant 128(1):58–69CrossRefGoogle Scholar
  116. Liu L-H, Ludewig U et al (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133(3):1220–1228PubMedCrossRefGoogle Scholar
  117. Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28(1):85–96CrossRefGoogle Scholar
  118. Ma JF, Tamai K et al (2006) A silicon transporter in rice. Nature 440(7084):688–691PubMedCrossRefGoogle Scholar
  119. Martínez-Ballesta M, Cabañero F et al (2008) Two different effects of calcium on aquaporins in salinity-stressed pepper plants. Planta 228(1):15–25PubMedCrossRefGoogle Scholar
  120. Martinez-Ballesta MC, Aparicio F et al (2003) Influence of saline stress on root hydraulic conductance and PIP expression in Arabidopsis. J Plant Physiol 160(6):689–697PubMedCrossRefGoogle Scholar
  121. Maurel C, Kado RT et al (1995) Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP. Embo J 14(13):3028–3035PubMedGoogle Scholar
  122. Maurel C, Reizer J et al (1993) The vacuolar membrane-protein gamma-TIP creates water specific channels in Xenopus oocytes. Embo J 12(6):2241–2247PubMedGoogle Scholar
  123. Maurel C, Tacnet F et al (1997) Purified vesicles of tobacco cell vacuolar and plasma membranes exhibit dramatically different water permeability and water channel activity. Proc Natl Acad Sci USA 94(13):7103–7108PubMedCrossRefGoogle Scholar
  124. Maurel C, Verdoucq L et al (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59(1):595–624PubMedCrossRefGoogle Scholar
  125. Meguro N, Tsuji H et al (2006) Analysis of expression of genes for mitochondrial aldehyde dehydrogenase in maize during submergence and following re-aeration. Breed Sci 56(4):365–370CrossRefGoogle Scholar
  126. Miyamoto N, Steudle E et al (2001) Hydraulic conductivity of rice roots. J Exp Bot 52(362):1835–1846PubMedCrossRefGoogle Scholar
  127. Mizutani M, Watanabe S et al (2006) Aquaporin NIP2;1 is mainly localized to the ER membrane and shows root-specific accumulation in Arabidopsis thaliana. Plant Cell Physiol 47(10):1420–1426PubMedCrossRefGoogle Scholar
  128. Moog PR, Janiesch P (1990) Root growth and morphology of Carex species as influenced by oxygen deficiency. Funct Ecol 4:201–208CrossRefGoogle Scholar
  129. Moshelion M, Becker D et al (2002) Plasma membrane aquaporins in the motor cells of Samanea saman: Diurnal and circadian regulation. Plant Cell 14(3):727–739PubMedCrossRefGoogle Scholar
  130. Newman EI (1976) Water movement through root systems. Phil Trans R Soc B 273:463–478CrossRefGoogle Scholar
  131. Niemietz CM, Tyerman SD (1997) Characterisation of water channels in wheat root membrane vesicles. Plant Physiol 115:561–567PubMedGoogle Scholar
  132. Nobel PS, Schulte PJ et al (1990) Water influx characteristics and hydraulic conductivity for roots of Agave deserti Engelm. J Exp Bot 41(225):409–415CrossRefGoogle Scholar
  133. Nyblom M, Frick A et al (2009) Structural and functional analysis of SoPIP2;1 mutants adds insight into plant aquaporin gating. J Mol Biol 387(3):653–668PubMedCrossRefGoogle Scholar
  134. Ouyang L-J, Whelan J et al (1991) Protein phosphorylation stimulates the rate of malate uptake across the peribacteroid membrane of soybean nodules. FEBS Lett 293(1–2):188–190PubMedCrossRefGoogle Scholar
  135. Pang JY, Newman I et al (2006) Microelectrode ion and O2 fluxes measurements reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ 29(6):1107–1121PubMedCrossRefGoogle Scholar
  136. Parent B, Hachez C et al (2009) Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiol 149(4):2000–2012PubMedCrossRefGoogle Scholar
  137. Raichaudhuri A, Peng M et al (2009) Plant vacuolar ATP-binding cassette transporters that translocate folates and antifolates in vitro and contribute to antifolate tolerance in vivo. J Biol Chem 284(13):8449–8460PubMedCrossRefGoogle Scholar
  138. Ranathunge K, Kotula L et al (2004) Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores. J Exp Bot 55(396):433–447PubMedCrossRefGoogle Scholar
  139. Ranathunge K, Steudle E et al (2003) Control of water uptake by rice (Oryza sativa L.): role of the outer part of the root. Planta 217:193–205PubMedGoogle Scholar
  140. Ranathunge K, Steudle E et al (2005) A new precipitation technique provides evidence for the permeability of Casparian bands to ions in young roots of corn (Zea mays L.) and rice (Oryza sativa L.). Plant Cell Environ 28(11):1450–1462CrossRefGoogle Scholar
  141. Rawyler A, Arpagaus S et al (2002) Impact of oxygen stress and energy availability on membrane stability of plant cells. Ann Bot 90(4):499–507PubMedCrossRefGoogle Scholar
  142. Reece CF, Riha SJ (1991) Role of root systems of eastern larch and white spruce in response to flooding. Plant Cell Environ 14(2):229–234CrossRefGoogle Scholar
  143. Sade N, Vinocur BJ et al (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? New Phytol 181(3):651–661PubMedCrossRefGoogle Scholar
  144. Sakurai J, Ishikawa F et al (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46(9):1568–1577PubMedCrossRefGoogle Scholar
  145. Santosa I, Ram P et al (2007) Patterns of peroxidative ethane emission from submerged rice seedlings indicate that damage from reactive oxygen species takes place during submergence and is not necessarily a post-anoxic phenomenon. Planta 226(1):193–202PubMedCrossRefGoogle Scholar
  146. Scholz-Starke J, Angeli AD et al (2004) Redox-dependent modulation of the carrot SV channel by cytosolic pH. FEBS lett 576(3):449–454PubMedCrossRefGoogle Scholar
  147. Scholz-Starke J, Gambale F et al (2005) Modulation of plant ion channels by oxidizing and reducing agents. Arch Biochem Biophys 434(1):43–50PubMedCrossRefGoogle Scholar
  148. Schutz K, Tyerman SD (1997) Water channels in Chara corallina. J Exp Bot 48:1511–1518Google Scholar
  149. Sedbrook JC, Kronebusch PJ et al (1996) Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia in Arabidopsis thaliana seedlings. Plant Physiol 111(1):243–257PubMedCrossRefGoogle Scholar
  150. Segonzac C, Boyer J et al (2007) Nitrate efflux at the root plasma membrane: Identification of an Arabidopsis excretion transporter. Plant Cell 19:3760–3777PubMedCrossRefGoogle Scholar
  151. Shelden MC, Howitt SM et al (2009) Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera. Funct Plant Biol 36:1–14CrossRefGoogle Scholar
  152. Smit B, Stachowiak M (1988) Effects of hypoxia and elevated carbon dioxide concentration on water flux through Populus roots. Tree Physiol 4(2):153–165PubMedGoogle Scholar
  153. Solaiman Z, Colmer TD et al (2007) Growth responses of cool-season grain legumes to transient waterlogging. Aust J Agric Res 58(5):406–412CrossRefGoogle Scholar
  154. Soukup A, Armstrong W et al (2007) Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytol 173(2):264–278PubMedCrossRefGoogle Scholar
  155. Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49(322):775–788CrossRefGoogle Scholar
  156. Stoimenova M, Igamberdiev A et al (2007) Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta 226(2):465–474PubMedCrossRefGoogle Scholar
  157. Subbaiah CC, Bush DS et al (1994a) Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells. Plant Cell 6(12):1747–1762PubMedCrossRefGoogle Scholar
  158. Subbaiah CC, Bush DS et al (1998) Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells. Plant Physiol 118(3):759–771PubMedCrossRefGoogle Scholar
  159. Subbaiah CC, Zhang J et al (1994b) Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedlings. Plant Physiol 105(1):369–376PubMedCrossRefGoogle Scholar
  160. Sutka M, Alleva K et al (2005) Tonoplast vesicles of Beta vulgaris storage root show functional aquaporins regulated by protons. Biol Cell 97(11):837–846PubMedCrossRefGoogle Scholar
  161. Swartz KJ (2008) Sensing voltage across lipid membranes. Nature 456(7224):891–897PubMedCrossRefGoogle Scholar
  162. Tanaka M, Wallace IS et al (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20(10):2860–2875PubMedCrossRefGoogle Scholar
  163. Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49(suppl 1):419–432CrossRefGoogle Scholar
  164. Törnroth-Horsefield S, Wang Y et al (2006) Structural mechanism of plant aquaporin gating. Nature 439(7077):688–694PubMedCrossRefGoogle Scholar
  165. Tournaire-Roux C, Sutka M et al (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393–397PubMedCrossRefGoogle Scholar
  166. Tyerman SD (1982) Water relations of seagrasses – stationary volumetric elastic-modulus and osmotic-pressure of the leaf-cells of halophila-ovalis, zostera-capricorni, and posidonia-australis. Plant Physiol 69(4):957–965PubMedCrossRefGoogle Scholar
  167. Tyerman SD, Oats P et al (1989) Turgor-volume regulation and cellular water relations in Nicotiana tabacum roots grown in high salinities. Aust J Plant Physiol 16:517–531CrossRefGoogle Scholar
  168. Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, New YorkGoogle Scholar
  169. Uehlein N, Lovisolo C et al (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737PubMedCrossRefGoogle Scholar
  170. Uehlein N, Otto B et al (2008) Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20:648–657PubMedCrossRefGoogle Scholar
  171. van der Weele CM, Canny MJ et al (1996) Water in aerenchyma spaces in roots. A fast diffusion path for solutes. Plant Soil 184(1):131–141CrossRefGoogle Scholar
  172. Vandeleur R, Niemietz C et al (2005) Roles of aquaporins in root responses to irrigation. Plant Soil 274(1–2):141–161CrossRefGoogle Scholar
  173. Vandeleur RK, Mayo G et al (2009) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: Diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149(1):445–460PubMedCrossRefGoogle Scholar
  174. Vartapetian BB (2006) Plant anaerobic stress as a novel trend in ecological physiology, biochemistry, and molecular biology: 2. Further development of the problem. Russ J Plant Physiol 53(6):711–738CrossRefGoogle Scholar
  175. Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Annals of Botany 79(suppl 1):3–20Google Scholar
  176. Verdoucq L, Grondin A et al (2008) Structure-function analysis of plant aquaporin AtPIP2;1 gating by divalent cations and protons. Biochem J 415(3):409–416PubMedCrossRefGoogle Scholar
  177. Vysotskaya LB, Arkhipova TN et al (2004) Effect of partial root excision on transpiration, root hydraulic conductance and leaf growth in wheat seedlings. Plant Physiol Biochem 42:251–255PubMedCrossRefGoogle Scholar
  178. Wallace IS, Choi WG et al (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta 1758(8):1165–1175PubMedCrossRefGoogle Scholar
  179. Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol 135(2):1059–1068PubMedCrossRefGoogle Scholar
  180. Wallace IS, Roberts DM (2005) Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Biochemistry 44(51):16826–16834PubMedCrossRefGoogle Scholar
  181. Waters I, Morrell S et al (1991) Effects of anoxia on wheat seedlings. II. Influence of O2 supply prior to anoxia on tolerance to anoxia, alcoholic fermentation, and sugar levels. J Exp Bot 42(244):1437–1447CrossRefGoogle Scholar
  182. Whiteman SA, Nuhse TS et al (2008) A proteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane. Plant J 56(1):146–156PubMedCrossRefGoogle Scholar
  183. Xia J-H, Roberts JKM (1996) Regulation of H+ extrusion and cytoplasmic pH in maize root tips acclimated to a low-oxygen environment. Plant Physiol 111:227–233PubMedGoogle Scholar
  184. Ye Q, Muhr J et al (2005) A cohesion/tension model for the gating of aquaporins allows estimation of water channel pore volumes in Chara. Plant Cell Environ 28(4):525–535CrossRefGoogle Scholar
  185. Ye Q, Steudle E (2006) Oxidative gating of water channels (aquaporins) in corn roots. Plant Cell Environ 29(4):459–470PubMedCrossRefGoogle Scholar
  186. Yu J, Yool AJ et al (2006) Mechanism of gating and ion conductivity of a possible tetrameric pore in Aquaporin-1. Structure 14:1411–1423PubMedCrossRefGoogle Scholar
  187. Zhang W-H, Tyerman SD (1991) Effect of low O2 concentration and azide on hydraulic conductivity and osmotic volume of the cortical cells of wheat roots. Aust J Plant Physiol 18:603–13CrossRefGoogle Scholar
  188. Zhang W-H, Tyerman SD (1997) Effect of low oxygen concentration on the electrical properties of cortical cells of wheat roots. J Plant Physiol 150:567–572PubMedGoogle Scholar
  189. Zhang W-H, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849–857PubMedCrossRefGoogle Scholar
  190. Zhang YX, Roberts DM (1995) Expression of soybean Nodulin-26 in transgenic tobacco – targeting to the vacuolar membrane and effects on floral and seed development. Mol Biol Cell 6:109–117PubMedGoogle Scholar
  191. Zhu J, Alvarez S et al (2007) Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol 145(4):1533–1548PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of AgricultureThe University of Western AustraliaCrawleyAustralia
  2. 2.School of Agriculture, Food and WineThe University of Adelaide (Waite Campus), Plant Research CentreGlen OsmondAustralia

Personalised recommendations