Reasoning about Typicality with Low Complexity Description Logics: The Logic \(\mathcal{EL}^{+^\bot}{\bf T}\)

  • Laura Giordano
  • Valentina Gliozzi
  • Nicola Olivetti
  • Gian Luca Pozzato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5883)


We present an extension of the low complexity Description Logic \(\mathcal{EL}^{+^\bot}\) for reasoning about prototypical properties and inheritance with exceptions. We add to \(\mathcal{EL}^{+^\bot}\) a typicality operator T, which is intended to select the “most normal” instances of a concept. In the resulting logic, called \(\mathcal{EL}^{+^\bot}{\bf T}\), the knowledge base may contain subsumption relations of the form “T(C) is subsumed by P”, expressing that typical C-members have the property P. We show that the problem of entailment in \(\mathcal{EL}^{+^\bot}{\bf T}\) is in co-NP by proving a small model result.


Description Logic Default Rule Default Theory Domain Element Polynomial Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: LTCS-Report LTCS-05-01, Inst. for Theoretical Compute Science, TU Dresden (2005),
  2. 2.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Proc. of IJCAI 2005, Professional Book Center, pp. 364–369 (2005)Google Scholar
  3. 3.
    Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation formalisms. J. Autom. Reasoning 14(1), 149–180 (1995)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their application in treating specificity in terminological default logic. J. of Automated Reasoning (JAR) 15(1), 41–68 (1995)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bonatti, P., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity dls: Preliminary notes. In: Proc. of IJCAI 2009 (2009)Google Scholar
  6. 6.
    Bonatti, P.A., Lutz, C., Wolter, F.: Description logics with circumscription. In: Proc. of KR, pp. 400–410 (2006)Google Scholar
  7. 7.
    Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. In: KR 2004, pp. 141–151 (2004)Google Scholar
  9. 9.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential Description Logics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 257–272. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning About Typicality in Preferential Description Logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 192–205. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: On Extending Description Logics for Reasoning About Typicality: a First Step. Technical Report 116/09, Dip. di Informatica, Univ. di Torino (2009)Google Scholar
  12. 12.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Prototypical reasoning with low complexity Description Logics: Preliminary results. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI), vol. 5753, pp. 430–436. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Ke, P., Sattler, U.: Next Steps for Description Logics of Minimal Knowledge and Negation as Failure. In: DL 2008 (2008)Google Scholar
  14. 14.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Straccia, U.: Default inheritance reasoning in hybrid kl-one-style logics. In: Proc. of IJCAI, pp. 676–681 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Laura Giordano
    • 1
  • Valentina Gliozzi
    • 2
  • Nicola Olivetti
    • 3
  • Gian Luca Pozzato
    • 2
  1. 1.Dip. di InformaticaUniversità del Piemonte Orientale 
  2. 2.Dip. di InformaticaUniversità di Torino 
  3. 3.LSIS-UMR CNRS 6168 Univ. “P. Cézanne” 

Personalised recommendations