Pstable Semantics for Logic Programs with Possibilistic Ordered Disjunction

  • Roberto Confalonieri
  • Juan Carlos Nieves
  • Javier Vázquez-Salceda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5883)


In this paper we define the semantics for capturing possibilistic ordered disjunction programs based on pstable semantics. The pstable semantics, based on paraconsistent logic, allows to treat inconsistency programs. Moreover being closer to possibilistic inference it allows to extend the necessity-values of the clauses to be considered, causing a higher level of comparison at the moment of selecting preferred pstable models of a possibilistic ordered disjunction programs. We compare the possibilistic pstable semantics for ordered disjunction programs with the recently defined possibilistic answer set semantics for the same class of logic programs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  2. 2.
    Brewka, G., Niemelä, I., Syrjänen, T.: Logic Programs with Ordered Disjunction. Computational Intelligence 20(2), 333–357 (2004)CrossRefGoogle Scholar
  3. 3.
    Confalonieri, R., Nieves, J.C., Vázquez-Salceda, J.: Logic Programs with Possibilistic Ordered Disjunction. Research Report LSI-09-19-R, UPC - LSI (2009)Google Scholar
  4. 4.
    Dubois, D., Lang, J., Prade, H.: Possibilistic Logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 439–513. Oxford University Press, Oxford (1994)Google Scholar
  5. 5.
    Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases. New Generation Computing 9(3/4), 365–386 (1991)CrossRefGoogle Scholar
  6. 6.
    Nicolas, P., Garcia, L., Stéphan, I., Lafèvre, C.: Possibilistic Uncertainty Handling for Answer Set Programming. Annals of Mathematics and Artificial Intelligence 47(1-2), 139–181 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Osorio, M., Arrazola Ramírez, J.R., Carballido, J.L.: Logical Weak Completions of Paraconsistent Logics. Journal of Logic and Computation 18(6), 913–940 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Osorio, M., Pérez, J.A.N., Ramírez, J.R.A., Macías, V.B.: Logics with Common Weak Completions. Journal of Logic and Computation 16(6), 867–890 (2006)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Roberto Confalonieri
    • 1
  • Juan Carlos Nieves
    • 1
  • Javier Vázquez-Salceda
    • 1
  1. 1.Dept. Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelona

Personalised recommendations