An Asynchronous Cellular Automata-Based Adaptive Illumination Facility

  • Stefania Bandini
  • Andrea Bonomi
  • Giuseppe Vizzari
  • Vito Acconci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5883)


The term Ambient Intelligence refers to electronic environments that are sensitive and responsive to the presence of people; in the described scenario the environment itself is endowed with a set of sensors (to perceive humans or other physical entities such as dogs, bicycles, etc.), interacting with a set of actuators (lights) that choose their actions (i.e. state of illumination) in an attempt improve the overall experience of these users. The model for the interaction and action of sensors and actuators is an asynchronous Cellular Automata (CA) with memory, supporting a self-organization of the system as a response to the presence and movements of people inside it. The paper will introduce the model, as well as an ad hoc user interface for the specification of the relevant parameters of the CA transition rule that determines the overall system behaviour.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shadbolt, N.: Ambient Intelligence. IEEE Intelligent Systems 18(4), 2–3 (2003)CrossRefGoogle Scholar
  2. 2.
    Bandini, S., Erbacci, G., Mauri, G.: Implementing cellular automata based models on parallel architectures: The capp project. In: Malyshkin, V.E. (ed.) PaCT 1999. LNCS, vol. 1662, pp. 167–179. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Bandini, S., Mauri, G., Pavesi, G., Simone, C.: Parallel simulation of reaction-diffusion phenomena in percolation processes: A model based on cellular automata. Future Generation Comp. Syst. 17(6), 679–688 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bandini, S., Mauri, G.: Multilayered cellular automata. Theor. Comput. Sci. 217(1), 99–113 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    von Neumann, J.: Theory of Self-Reproducting Automata. University of Illinois Press, Urbana and London (1966)Google Scholar
  6. 6.
    Weimar, J.R.: Simulation with Cellular Automata. Logos Verlag Berlin (1997) ISBN 3-89722-026-1Google Scholar
  7. 7.
    Rosin, P.L.: Training cellular automata for image processing. IEEE Transactions on Image Processing 15(7), 2076–2087 (2006)CrossRefGoogle Scholar
  8. 8.
    Behring, C., Bracho, M., Castro, M., Moreno, J.A.: An algorithm for robot path planning with cellular automata. In: Bandini, S., Worsch, T. (eds.) ACRI, pp. 11–19. Springer, Heidelberg (2000)Google Scholar
  9. 9.
    Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1985)Google Scholar
  10. 10.
    Margolus, N., Toffoli, T.: Cellular Automata Machines. A new environment for modelling. MIT Press, Cambridge (1987)Google Scholar
  11. 11.
    Paolo, E.A.D.: Searching for rhythms in asynchronous random boolean networks. In: Bedau, M. (ed.) Alife VII: Proceedings of the Seventh International Conference, pp. 73–80. MIT Press, Cambridge (2000)Google Scholar
  12. 12.
    Thomas, R., Organization, E.M.B.: Kinetic logic: a Boolean approach to the analysis of complex regulatory systems. In: Thomas, R. (ed.) Proceedings of the EMBO course ”Formal analysis of genetic regulation,” held in Brussels, September 6-16, 1977. Springer, Berlin (1979)Google Scholar
  13. 13.
    Nehaniv, C.L.: Evolution in asynchronous cellular automata. In: ICAL 2003: Proceedings of the eighth international conference on Artificial life, pp. 65–73. MIT Press, Cambridge (2003)Google Scholar
  14. 14.
    Cornforth, D., Green, D.G., Newth, D.: Ordered asynchronous processes in multi-agent systems. Physica D: Nonlinear Phenomena 204(1-2), 70–82 (2005)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Zambonelli, F., Mamei, M., Roli, A.: What can cellular automata tell us about the behavior of large multi-agent systems. In: Garcia, A.F., de Lucena, C.J.P., Zambonelli, F., Omicini, A., Castro, J. (eds.) Software Engineering for Large-Scale Multi-Agent Systems. LNCS, vol. 2603, pp. 216–231. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Buvel, R.L., Ingerson, T.E.: Structure in asynchronous cellular automata. Physica D 1, 59–68 (1984)MathSciNetGoogle Scholar
  17. 17.
    Lumer, E.D., Nicolis, G.: Synchronous versus asynchronous dynamics in spatially distributed systems. Phys. D 71(4), 440–452 (1994)zbMATHCrossRefGoogle Scholar
  18. 18.
    Alonso-Sanz, R.: The beehive cellular automaton with memory. Journal of Cellular Automata 1(3), 195–211 (2006)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Gutowitz, H.: Cellular Automata: Theory and Experiment. MIT Press/Bradford Books, Cambridge Mass. (1991), ISBN 0-262-57086-6Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stefania Bandini
    • 1
  • Andrea Bonomi
    • 1
  • Giuseppe Vizzari
    • 1
  • Vito Acconci
    • 2
  1. 1.Complex Systems and Artificial Intelligence (CSAI) research center, Department of Computer Science, Systems and Communication (DISCo)University of Milan - BicoccaMilanoItaly
  2. 2.Acconci StudioBrooklynUSA

Personalised recommendations