A Vision-Based Trajectory Controller for Autonomous Cleaning Robots

  • Lorenz Gerstmayr
  • Frank Röben
  • Martin Krzykawski
  • Sven Kreft
  • Daniel Venjakob
  • Ralf Möller
Part of the Informatik aktuell book series (INFORMAT)


Autonomous cleaning robots should completely cover the accessible area with minimal repeated coverage. We present a mostly visionbased navigation strategy for systematical exploration of an area with meandering lanes. The results of the robot experiments show that our approach can guide the robot along parallel lanes while achieving a good coverage with only a small proportion of repeated coverage. The proposed method can be used as a building block for more elaborated navigation strategies which allow the robot to systematically clean rooms with a complex workspace shape.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prassler, E., Ritter, A., Schaeffer, C., Fiorini, P.: A short history of cleaning robots. Autonomous Robots 9 (2000) 211–226CrossRefGoogle Scholar
  2. 2.
    Prassler, E., Kosuge, K.: Domestic Robotics. In: Springer Handbook of Robotics. Springer (2008) 1253–1281Google Scholar
  3. 3.
    Choset, H.: Coverage for robotics — a survey of recent results. Annals of Mathematics and Artificial Intelligence 31 (2001) 113–126CrossRefGoogle Scholar
  4. 4.
    Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas by a mobile robot. Annals of Mathematics and Artificial Intelligence 31 (2001) 77–98CrossRefGoogle Scholar
  5. 5.
    Hazon, N., Mieli, F., Kaminka, G.: Towards robust on-line multi-robot coverage. In: Proceedings of the ICRA 2006. (2006) 1710–1715Google Scholar
  6. 6.
    Trullier, O., Wiener, S., Berthoz, A., Meyer, J.: Biologically-based artificial navigation systems: Review and prospects. Progress in Neurobiology 51 (1997) 483–544CrossRefGoogle Scholar
  7. 7.
    Franz, M., Mallot, H.: Biomimetic robot navigation. Robotics and Autonomous Systems 30 (2000) 133–153CrossRefGoogle Scholar
  8. 8.
    Cartwright, B., Collett, T.: Landmark learning in bees. Journal of Comparative Physiology A 151 (1983) 521–543CrossRefGoogle Scholar
  9. 9.
    Cartwright, B., Collett, T.: Landmark maps in honeybees. Biological Cybernetics 57 (1987) 85–93CrossRefGoogle Scholar
  10. 10.
    Möller, R., Vardy, A.: Local visual homing by matched-filter descent in image distances. Biological Cybernetics 95 (2006) 413–430CrossRefMathSciNetGoogle Scholar
  11. 11.
    Vardy, A., Möller, R.: Biologically plausible visual homing methods based on optical flow techniques. Connection Science 17 (2005) 47–89CrossRefGoogle Scholar
  12. 12.
    Franz, M., Schölkopf, B., Mallot, H., Bülthoff, H.: Where did I take that snapshot? Scene-based homing by image matching. Biological Cybernetics 79 (1998) 191–202MATHCrossRefGoogle Scholar
  13. 13.
    Möller, R.: Local visual homing by warping of two-dimensional images. Robotics and Autonomous Systems 57 (2009) 87–101CrossRefGoogle Scholar
  14. 14.
    Möller, R.: Three 2D-warping schemes for visual robot navigation. Autonomous Robots (2009) submitted. Google Scholar
  15. 15.
    Filliat, D., Meyer, J.: Map-based navigation in mobile robots: part I. Cognitive Systems Research 4 (2003) 243–282CrossRefGoogle Scholar
  16. 16.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2005)Google Scholar
  17. 17.
    Chen, Z., Samarabandu, J., Rodrigo, R.: Recent advances in simultaneous localization and map-building using computer vision. Advanced Robotics 21 (2007) 113–126CrossRefGoogle Scholar
  18. 18.
    Kreft, S.: Reinigungstrajektorien mobiler Roboter unter visueller Steuerung. Diploma thesis, Bielefeld University, Faculty of Technology, Computer Engineering Group (2007)Google Scholar
  19. 19.
    Möller, R., Vardy, A., Gerstmayr, L., Röben, F., Kreft, S.: Neuroethological concepts at work: Insect-inspired methods for visual robot navigation. In: Biological Approaches for Engineering. (2008) 91–94Google Scholar
  20. 20.
    Greguss, P.: Panoramic imaging block for three-dimensional space. US Patent No. 4,566,763 (1986)Google Scholar
  21. 21.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2003)Google Scholar
  22. 22.
    de Jong, J.: Kaimanfilter zur Positionsbestimmung auf mäandrierenden Bahnen. Diploma thesis, Bielefeld University, Faculty of Technology, Computer Engineering Group (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Lorenz Gerstmayr
    • 1
    • 2
  • Frank Röben
    • 1
  • Martin Krzykawski
    • 1
  • Sven Kreft
    • 1
  • Daniel Venjakob
    • 1
  • Ralf Möller
    • 1
    • 2
  1. 1.AG Technische Informatik, Technische FakultätUniversität BielefeldGermany
  2. 2.Exzellenzcluster Cognitive Interaction TechnologyUniversität BielefeldGermany

Personalised recommendations